Skip to main content
Log in

Effects of growth rate of eastern poplar trees on the chemical and morphological characteristics of wood fibers

  • Original Article
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Attempts are underway to speed up timber production using genetic improvement and enhanced management practices. However, the impacts of possible morphological and chemical changes on the properties of secondary wood products are less studied. This research thus studied the relationship of tree-ring widths of eastern poplar trees (Populus deltoides Bartr.) and the morphological and chemical characteristics of the wood fibers. Cellulose, lignin, ash, and extractives contents were determined according to the Technical Association of Pulp and Paper Industry standards. Accordingly, the mean values of the various parameters measured, such as the fiber length and diameter, the diameter of the cell cavity, and the cell wall thickness along with functionality parameters such as Runkel, slenderness, and flexibility ratio, and the amounts of cellulose, lignin, extractives, and ash contents were determined. As a result, statistical analysis indicated significant correlations between tree-ring width and length and diameter of the fiber, cell cavity, Runkel ratio, cell wall thickness, cellulose content and wood density. On the contrary, there were no significant correlations between tree-ring width and slenderness and flexibility ratios, lignin, ash, and extractives contents. The investigation on the radial variation of wood properties showed from the pith to the bark, fiber length and diameter, cell wall thickness, cellulose, and density increased, and cell cavity, Runkel ratio, ash, extractives, and lignin contents decreased. Overall, increases in tree-ring width of eastern poplar improved wood quality, as raw material, for manufacturing of the most common secondary products in the wood industry, including paper and fiberboard with wide-ranging wood applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adi DS, Risanto L, Damayanti R, Rullyati S, Dewi LM, Susanti R, Dwianto W, Hermiati E, Watanabe T (2014) Exploration of unutilized fast growing wood species from secondary forest in Central Kalimantan: study on the fiber characteristic and wood density. Procedia Environ Sci 20:321–327. https://doi.org/10.1016/j.proenv.2014.03.040

    Article  CAS  Google Scholar 

  • Alexy P, Kosikova B, Podstranska G (2000) The effect of blending lignin with polyethylene and polypropylene on physical properties. Polymer 41(13):4901–4908. https://doi.org/10.1016/S0032-3861(99)00714-4

    Article  CAS  Google Scholar 

  • Alwar A, Hamed AM, Al-Kaabi KH (2009) Characterization of treated date palm tree fiber as composite reinforcement. Compos Part B 40:601–606. https://doi.org/10.1016/j.compositesb.2009.04.018

    Article  CAS  Google Scholar 

  • Anderson JA, Luckert MK (2007) Can hybrid poplar save industrial forestry in Canada? A financial analysis in Alberta and policy considerations. For Chron 83(1):92–104. https://doi.org/10.5558/tfc83092-1

    Article  Google Scholar 

  • Anoop EV, Ajayghosh V, Nijil JM, Jijeesh CM (2014) Evaluation of pulp wood quality of selected tropical pines raised in the high ranges of Idukki District, Kerala. J Trop Agric 52(1):59–66

    Google Scholar 

  • Baharoglu M, Nemli G, Sarı B, Birtürk T, Bardak S (2013) Effects of anatomical and chemical properties of wood on the quality of particleboard. Compos B Eng 52:282–285. https://doi.org/10.1016/j.compositesb.2013.04.009

    Article  CAS  Google Scholar 

  • Ball J, Carle J, Del Lungo A (2005) Contribution of poplars and willows to sustainable forestry and rural development. Unasylva 56(2):3–9

    Google Scholar 

  • Blanchette D, Richard A, Fournier J, Luther JE, François C (2015) predicting wood fiber attributes using local-scale metrics from terrestrial LiDAR data: a case study of Newfoundland conifer species. For Ecol Manag 347:116–129. https://doi.org/10.1016/j.foreco.2015.03.013

    Article  Google Scholar 

  • Calderon A. Bustamante J, Riu N, Pérez S, Zanetti P (2012) Behavior of clones of Populus spp, in Lavalle, Mendosa, Argentina. In: 24th session of international poplar commission, India, Dehradun

  • Casey PJ (1980) Chemistry and chemical technology, 3rd edn, Wiley-Interscience, New York

  • Cech MY, Kennedy RW, Smith JHG (1960) Variation in some wood quality attributes of one-year-old back cottonwood. Tappi 43(10):857–858

    CAS  Google Scholar 

  • Chauhan L, Gupta S, Madhwal RC, Pandey R, Pal M (2001) Interclonal, intraclonal and within tree variation in wood parameters of different clones of Populus deltoides. Indian For 127(7):777–784

    Google Scholar 

  • Chen ZQ, García-Gil MR, Karlsson B, Lundqvist SO, Olsson L, Wu HX (2014) Inheritance of growth solid wood quality traits in a large Norway spruce population tested at two locations in southern Sweden. Tree Genet Genomes 10:1291–1302

    Article  Google Scholar 

  • Chen ZQ, Abramowicz K, Raczkowski R, Ganea S, Wu HX, Lundqvist S-O, Mörling T, Sjöstedt de Luna S, García-Gil MR, Mellerowicz EJ (2016) Method for accurate fiber length determination from increment cores for large-scale population analyses in Norway spruce. Holzforschung 70:829–838. https://doi.org/10.1515/hf-2015-0138

    Article  CAS  Google Scholar 

  • Cobas AC, Felissia FE, Monteoliva SS, Area MC (2013) Optimization of the properties of poplar and willow chemimechanical pulps by a mixture design of juvenile and mature. Wood Bioresour Technol 8(2):1646–1656

    Google Scholar 

  • DeBell DS, Singleton R, Harrington CA, Gartner BL (2002) wood density and fiber length in young populus stems: relation to clone, age, growth rate, and pruning. Wood Fiber Sci 34(4):529–539

    CAS  Google Scholar 

  • Ding W, Koubaa A, Chaala A (2013) Mechanical properties of MMA-hardened hybrid poplar wood. Ind Crops Prod 46:304–310. https://doi.org/10.1016/j.indcrop.2013.02.004

    Article  CAS  Google Scholar 

  • Downes GM, Hudson LL, Raymond CA, Dean AJ, Michell AG, Schimleck LR, Evans R, Muneri A (1997) Sampling Eucalypts for wood and fiber properties. CSIRO Publishing, Australia, p 132

    Book  Google Scholar 

  • Dufour B, Morin H (2013) Climatic control of tracheid production of black spruce in dense mesic stands of eastern Canada. Tree Physiol 33:175–186. https://doi.org/10.1093/treephys/tps126

    Article  PubMed  Google Scholar 

  • Dutilleul P, Herman M, Avella-Shaw T (1998) Growth rate effects on correlations among ring width, wood density and mean tracheid length in Norway spruce (Picea abies). Can J For Res 28(1):56–68. https://doi.org/10.1139/x97-189

    Article  Google Scholar 

  • Ebrahimpour Kasmani J, Samariha A, Kiaei M (2011) Effect of agricultural residues on biometry, chemical and morphological properties and use in papermaking industrial. Middle-East J Sci Res 7(6):844–850

    Google Scholar 

  • Ek M, Gellerstedt G, Henriksson G (2009) Pulp and paper chemistry and technology. Pulping chemistry and technology, vol. 2, 1st edn, Walter de Gruyter GmbH & Co, Berlin, pp 429-461

    Book  Google Scholar 

  • Fao (2016) Poplars and other fast-growing trees—renewable resources for future green economies. international poplar commission. Berlin, Germany. p 106. Retrieved October 19, 2020, from http://www.fao.org/forestry/45094-08e1e5bf441bc41bb139e66da0915f2c.pdf

  • Franklin G (1945) Preparation of thin sections of synthetic resins and woody resin composites and a new method for wood. Nature 155:3924–3951. https://doi.org/10.1038/155051a0

    Article  Google Scholar 

  • Fujiwara S, Yang KC (2000) The relationship between cell length and ring width and circumferential growth rate in five Canadian species. IAWA J 21(3):335–345. https://doi.org/10.1163/22941932-90000251

    Article  Google Scholar 

  • García-González I, Eckstein D (2003) Climatic signal of early wood vessels of oak on a maritime site. Tree Physiol 23(7):497–504. https://doi.org/10.1093/treephys/23.7.497

    Article  Google Scholar 

  • Ghasemi R, Modirrahmati AR (2004) Investigation on wood production of different poplar clones (wide crown clones) in Karaj area. Iran J For Poplar Res 12(2):221–250. https://ijfpr.areeo.ac.ir/article_109294.html?lang=en

  • Giroud G, Bégin J, Defo M, Ung CH (2016) Eco geographic variation in black spruce wood properties across Quebec’s boreal forest. For Ecol Manag 378:131–143. https://doi.org/10.1016/j.foreco.2016.07.031

    Article  Google Scholar 

  • Gominho J, Figueira J, Rodrigues JC, Pereira H (2001) Within-tree variation of heartwood, extractives and wood density in the eucalypt hybrid urograndis (Eucalyptus grandis × E. urophylla). Wood Fiber Sci 33(1):3–8

    CAS  Google Scholar 

  • Hizal TK, Erdin N (2016) Radial variation of annual ring width and fiber dimensions from natural and plantation trees of Alder (Alnus glutinosa L. Gaertner). Wood Ormancilik dergisi 12(2):1–12

    Google Scholar 

  • Hong Z, Fries A, Wu HX (2014) High negative genetic correlations between growth traits and wood properties suggest incorporating multiple traits selection including economic weights for the future Scots pine breeding programs. Ann For Sci 71:463–472. https://doi.org/10.1007/s13595-014-0359-3

    Article  Google Scholar 

  • Horn RA (1974) Morphology of wood pulp fiber from softwoods, hardwoods and influence on paper strength. USDA Forest Service. Research Paper FPL 312. For. Prod. Lab, Madis on, WI, USA

  • Huda ASMA, Koubaa A, Cloutier A, Hernández R, Fortin Y (2011) Wood quality of hybrid poplar clones in southern Québec: clonal variation and property interrelationships. In: Proceedings of the 3rd international scientific conference on hardwood processing, Blacksburg, Virginia, USA, pp 281–289

  • Ištok I, Bogoslav Š, Hasan M, Popović G, Sedlar T (2017) Fiber characteristics of white poplar (Populus alba L.) juvenile wood along the Drava river. Drvna industrija 68(3):241–247. https://doi.org/10.5552/drind.2017.1729

    Article  Google Scholar 

  • Ivanisevic P, Galic Z, Pekec S, Kovacevic B, Roncevic S, Andrasev S (2012) The Effect of habitat properties and management technology on black poplar biomass production in Serbia. In: 24th session of international poplar commission, India, Dehradun

  • Jahan MS, Haque M, Quaiyyum MA, Nayeem J, Bashar MS (2019) Radial variation of anatomical, morphological and chemical characteristics of Acacia auriculiformis in evaluating pulping raw material. J Indian Acad Wood Sci 16(2):118–124. https://doi.org/10.1007/s13196-019-00245-w

    Article  Google Scholar 

  • Kaushal R, Sharma N, Dogra V (2016) Molecular characterization of glycosyl hydrolases of Trichoderma harzianum WF5—a potential strain isolated from decaying wood and their application in bioconversion of poplar wood to ethanol under separate hydrolysis and fermentation. Biomass Bioenergy 85:243–251. https://doi.org/10.1016/j.biombioe.2015.12.010

    Article  CAS  Google Scholar 

  • Kellogg RM, Thykeson E (1975) Predicting Kraft mill paper strength from fiber properties. TAPPI 58(4):131–135. 

    Google Scholar 

  • Koubaa A, Hernández RE, Beaudoin M, Poliquin J (1998) Interclonal, intraclonal and within-tree variation in fiber length of poplar hybrid clones. Wood Fiber Sci 30(1):40–47

    CAS  Google Scholar 

  • Lee S, Shupe TF, Hse CY (2006) Mechanical and physical properties of agro-based fiberboard. Holz Roh-Werkst 64(1):74–79

    Article  CAS  Google Scholar 

  • Lei HL, Gartner B, Milota MR (1997) Effect of growth rate on the anatomy, specific gravity, and bending properties of wood from 7-year-old red alder (Alnus rubra). Can J For Res 27(1):80–85. https://doi.org/10.1139/x96-165

    Article  Google Scholar 

  • Lundqvist S-O, Seifert S, Grahn T, Olsson L, Rosario Garcia-Gil M, Karlsson B, Seifert T (2018) Age and weather effects on between and within ring variations of number, width and coarseness of tracheid’s and radial growth of young Norway spruce. Eur J For Res 137:719–743. https://doi.org/10.1007/s10342-018-1136-x

    Article  CAS  Google Scholar 

  • Madakadze IC, Radiotis T, Li J, Goel K, Smith DL (1999) Kraft pulping characteristics and pulp properties of warm season grasses. Bioresour Technol 69:75–85. https://doi.org/10.1016/0960-8524(98)00131-X

    Article  CAS  Google Scholar 

  • Matisons R, Jansons J, Katrevičs J, Jansons A (2015) Relation of tree-ring width and early wood vessel size of alien Quercus rubra L. with climatic factors in Latvia. Silva Fennica 49(4):1–14. https://doi.org/10.14214/sf.1391

    Article  Google Scholar 

  • Matolcsy GA (1975) Correlation of fiber dimensions and wood properties with the physical properties of Kraft pulp of Abies balsamea L, (Mill) Tappi 58(4):136–141. http://www.pascalfrancis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7678002302

  • Miranda I, Almeida MH, Pereira H (2001) Influence of provenance, subspecies and site on wood density in Eucalyptus globulus labill. Wood Fiber Sci 33(1):9–15

    CAS  Google Scholar 

  • Muneri A, Raymond CA (2001) Nondestructive sampling of Eucalyptus globulus and E. nitens for wood properties. I. Basic density. Wood Sci Technol 35:41–56. https://doi.org/10.1007/s002260100088

    Article  CAS  Google Scholar 

  • Oluwadare AO, Ashimiyu OS (2007) The relationship between fiber characteristics and pulp-sheet properties of Leucaena leucocephala (Lam.) de wit. Middle-East J Sci Res 2(2):63–68

    Google Scholar 

  • Pande PK (2011) Variations in wood properties and growth in some clones of Populus deltoides Bartr. ex Marsh. Am J Plant Sci 2(5):644–649. https://doi.org/10.4236/ajps.2011.25076

    Article  Google Scholar 

  • Pande PK (2012) Status of anatomy and physical properties of wood in poplars. Wood anatomy discipline, Forest Research Institute, Dehradun. For Bull 12(1):132–150

    Google Scholar 

  • Pande PK, Dhiman RC (2011) Performance and variability patterns in wood properties and growth traits in the parents, F1 and F2 generation hybrid clones of Populus deltoides. J For Res 22(3):379–385. https://doi.org/10.1007/s11676-011-0182-8

    Article  Google Scholar 

  • Pande PK, Dhiman RC (2012) Variations in wood anatomical properties and specific gravity of half sib progenies of Populus deltoides Bartr. J For Res 23(3):491–496. https://doi.org/10.1007/s11676-012-0289-6

    Article  Google Scholar 

  • Panish AJ, De Zeeuw C (1980) Textbook of wood technology, 4th edn. Mcgraw Hill Inc, New York

    Google Scholar 

  • Pearson CH, Halvorson AD, Moench RD, Hammon RW (2010) Production of hybrid poplar under short-term, intensive culture in Western Colorado. Ind Crops Prod 31(3):492–498. https://doi.org/10.1016/j.indcrop.2010.01.011

    Article  Google Scholar 

  • Pliura A, Zhang SY, Mackay J, Bousquet J (2007) Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trails. For Ecol Manag 238(1–3):92–106. https://doi.org/10.1016/j.foreco.2006.09.082

    Article  Google Scholar 

  • Prasad BM, Sain MM (2003) Mechanical properties of thermally treated hemp fibers in inert atmosphere for potential composite reinforcement. Mater Res Innov 7(4):231–238. https://doi.org/10.1007/s10019-003-0258-y

    Article  CAS  Google Scholar 

  • Pritzkow C, Heinrich I, Grudd H, Helle G (2014) Relationship between wood anatomy, tree-ring widths and wood density of Pinus sylvestris L. and climate at high latitudes in northern Sweden. Dendrochronologia 32(4):295–302. https://doi.org/10.1016/jdendro.2014.07.003

    Article  Google Scholar 

  • Reme PA, Helle T (2001) Quantitative assessment of mechanical fiber dimensions during defibration and fiber development. J Pulp Paper Sci 27(1):1–7. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=860405

  • Riahifar N, Falah A, Samani M, Gorgi Bahri U (2008) Investigation of growth of Populus deltoides plantation under different spacing in northern Iran (Mazandaran). In: Proceedings of the second national congress on poplar and potential use in poplar plantation, Tehran, Research Institute of Forests and Rangelands. pp 88–99

  • Rohde V, Hahn T, Wagner M, Böringer S, Tübke B, Brosse N, Dahmen N, Schmiedl D (2018) Potential of a short rotation coppice poplar as a feedstock for platform chemicals and lignin-based building blocks. Ind Crops Prod 123:698–706. https://doi.org/10.1016/j.indcrop.2018.07.034

    Article  CAS  Google Scholar 

  • Rowell RM, Sanadi AR, Caulfield DF, Jacobson RE (1997) Utilization of natural fibers in plastic composites: problems and opportunities online referencing. Lignocellulosic-Plastic Composite 13:23–51

    Google Scholar 

  • Sabatti M, Fabbrini F, Harfouche A, Beritognolo I, Mareschi L, Carlini M, Paris P, Scarascia-Mugnozza G (2014) Evaluation of biomass production potential and heating value of hybrid poplar genotypes in a short-rotation culture in Italy. Ind Crops Prod 61:62–73. https://doi.org/10.1016/j.indcrop.2014.06.043

    Article  Google Scholar 

  • Sadiku NA, Abdukareem KA (2019) Fiber morphological variations of some Nigerian guinea savannah timber species. Maderas Ciencia y tecnología 21(2):239–248. https://doi.org/10.4067/s0718-221x2019005000211

    Article  Google Scholar 

  • Salvo L, Leandro L, Contreras H, Cloutier A, Elustondo DM, Ananías RA (2016) Radial variation of density and anatomical features of eucalyptus nitens trees. Wood Fiber Sci 49(3):1–11

    Google Scholar 

  • Saxena V, Gupta S (2011) Wood anatomy of family Salvadoraceae from the indian subcontinent with special reference to the ultrastructure of the vessel wall. Aliso 29(1):59–63. https://doi.org/10.5642/aliso.20112901.08

    Article  Google Scholar 

  • Searle SY, Malins CJ (2014) Will energy crop yields meet expectations? Biomass Bioenergy 65:3–12. https://doi.org/10.1016/j.biombioe.2014.01.001

    Article  Google Scholar 

  • Seo JW, Eckstein D, Jalkanen R, Schmitt U (2011) Climatic control of intra-and inter-annual wood-formation dynamics of Scots pine in northern Finland. Environ Exp Bot 72(3):422–431. https://doi.org/10.1016/j.envexpbot.2011.01.003

    Article  Google Scholar 

  • Seth RS, Page DH (1988) Fiber Properties and tearing resistance. Tappi J 71(2):103–107. http://www.pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7709279

  • Smook GA (2002) Handbook for pulp and paper technologies, 3rd edn. Angus Wilde Publications Inc., Vancouver (ISBN 0-9694628-5-9)

    Google Scholar 

  • Speer JH (2010) Fundamentals of tree-ring research. The University of Arizona Press, Tucson

    Google Scholar 

  • Tumajer J, Treml V (2016) Response of floodplain pedunculate oak (Quercus robur L.) tree-ring width and vessel anatomy to climatic trends and extreme hydro climatic events. For Ecol Manag 379:185–197. https://doi.org/10.1016/j.foreco.2016.08.013

    Article  Google Scholar 

  • Tutus A, Comlekcioglu N, Karaman S, Alma MH (2010) Chemical composition and fiber properties of Crambe orientalis and Crambe tataria. Int J Agric Biol 12(2):286–290. http://www.fspublishers.org.

  • Van Buijtenen JP (1969) Controlling wood properties by forest management. TAPPI 52:257–259

    Google Scholar 

  • Verani S, Sperandio G (2008) International poplar commission thematic papers, FAO—Forestry department. http://www.fao.org/forestry/ipc

  • Ververis C, Georghiou K, Christodoulakis N, Santas P, Santas R (2004) Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind Crops Prod 19(3):245–254. https://doi.org/10.1016/j.indcrop.2003.10.006

    Article  CAS  Google Scholar 

  • Watson AJ, Dadswell HE (1961) Influence of fiber morphology on paper properties. Part Fiber Length APPITA CSIRO Australia 14(5):168–178

    CAS  Google Scholar 

  • Watt MS, D’Ath R, Leckie AC, Clinton PW, Coker G, Davis MR, Simcock R, Parfitt RL, Dando J, Mason EG (2008) Modeling the influence of stand structural, edaphic and climatic influences on juvenile Pinus radiata fiber length. For Ecol Manag 254:166–177. https://doi.org/10.1016/j.foreco.2007.07.036

    Article  Google Scholar 

  • Wen Y (2003) Variation of fiber length and fiber width for seven popular clones. Journ Nanjing Forest Univ 27(6):23–26

    Google Scholar 

  • Yu Q, Pulkkinen P, Rautio M, Haapanen M, Alén R, Stener LG, Beuker E, Tigerstedt PMA (2001) Genetic control of wood physicochemical properties, growth, and phenology in hybrid aspen clones. Can J For Res 31:1348–1356. https://doi.org/10.1139/cjfr-31-8-1348

    Article  Google Scholar 

  • Zabel B, Sprague JR (1998) Juvenile wood in forest trees. Springer series in wood science, Springer-Verlag Berlin Heidelberg

  • Zha CS, Fang Y, Shengquan L, Wang B (2005) Radial variation of fiber morphology of different poplar clones. J Anhui Agric Univ 32(2):192–197

    Google Scholar 

  • Zhang SY, Yu QB, Chauret G, Koubaa A (2003) Selection for both growth and wood properties in hybrid poplar clones. For Sci 49(6):901–908. https://doi.org/10.1093/forestscience/49.6.901

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Shafaroud Forest Company, and they provided us the trees for free. We would also like to show our gratitude to the Department of Wood and Paper Science and Technology of the University of Tehran for providing us laboratory facilities.

Funding

Funding was provided by Urmia University (10/D/485).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Hossein Zadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borukanlu, M.R., Zadeh, O.H., Moradpour, P. et al. Effects of growth rate of eastern poplar trees on the chemical and morphological characteristics of wood fibers. Eur. J. Wood Prod. 79, 1479–1494 (2021). https://doi.org/10.1007/s00107-021-01711-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-021-01711-4

Navigation