Skip to main content
Log in

Study of the solubility and composition of welded wood material at progressive welding times

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The solubility in water and carbohydrates/lignin composition after hydrolysis of wood welded by linear friction welding was studied. Welded beech (WB) and welded spruce (WS) were analyzed at welding times (Wt) of 1, 1.5, 2, 2.5, 3 s, and 2, 4, 6, 8, 10, 12 s, respectively. Scratched welded material was first extracted in water, dried, cryo-milled, and then hydrolyzed with sulfuric acid. Maximal percentages of solids dissolved in water were 17.7 and 10 for WB and WS and 2.2 and 1.4 for un-welded beech and spruce, respectively. Among water extracts, lignin, mono-oligosaccharides, acetic acid, vanillin, furfural, 5 hydroxymethylfurfural (5HMF), and syringaldehyde were quantified. Maximal percentages of water soluble lignin in WB and WS were 5 and 3.6, respectively; molecular weight and polydispersity were also determined. Regarding carbohydrates in the water extracts, a maximum of 1.4 % oligosaccharides in WB and 1 % monosaccharides in WS were detected. After hydrolysis, an increase in the amount of Klason lignin and a progressive diminution of some sugars take place at consecutive Wt of WB and WS. This study allows explaining to a good extent the behavior of welded joints face to liquid water. Moreover, the degradation of certain wood components is clearly presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Belleville B, Stevanovic T, Cloutier A, Pizzi A, Prado M, Erakovic S, Diouf PN, Royer M (2013) An investigation of thermochemical changes in Canadian hardwood species during wood welding. Eur J Wood Prod 71:245–257

    Article  CAS  Google Scholar 

  • Bobleter O (1994) Hydrothermal degradation of polymers derived from plant. Prog Polym Sci 19:797–841

    Article  CAS  Google Scholar 

  • Delmotte L, Ganne-Chédeville C, Leban JM, Pizzi A, Pichelin F (2008) CP-MAS 13C NMR and FTIR investigation of the degradation reactions of polymer constituents in wood welding. Poly Deg Stab 93:406–412

    Article  CAS  Google Scholar 

  • Delmotte L, Mansouri HR, Omrani P, Pizzi A (2009) Influence of wood welding frequency on wood constituents chemical modifications. J Adhesion Sci Technol 23:1271–1279

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (2003) Wood-chemistry, ultrastructure, reactions. De Gruyter, Berlin

    Google Scholar 

  • Ganne-Chédeville C (2008) Soudage linéaire du bois: étude et compréhension des modifications physico-chimiques et développement d’une technologie d’assemblage innovante (Wood welding by linear friction: investigations and understanding of the physical and chemical modifications and development of an innovative technology) (In French) Dissertation, University Henri Poincaré, Nancy

  • Ganne-Chédeville C, Properzi M, Leban JM, Pizzi A, Pichelin F (2008a) Wood welding: chemical and physical changes according to the welding time. J Adhesion Sci Technol 22:761–773

    Google Scholar 

  • Ganne-Chédeville C, Duchanois G, Pizzi A, Leban JM, Pichelin F (2008b) Predicting the thermal behavior of wood during linear welding using the finite element method. J. Adhesion Sci. Technol. 22:1209–1221

    Article  Google Scholar 

  • Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57:191–202

    Article  CAS  Google Scholar 

  • Gfeller B, Zanetti M, Properzi M, Pizzi A, Pichelin F, Lehmann M, Delmotte L (2003) Wood bonding by vibrational welding. J Adhesion Sci Technol 17:1573–1589

    Article  CAS  Google Scholar 

  • Grénman H, Eränen K, Krogell J, Willför S, Salmi T, Murzin DY (2011) Kinetics of aqueous extraction of hemicelluloses from spruce in an intensified reactor system. Ind Eng Chem Res 50:3818–3828

    Article  Google Scholar 

  • Janzon R, Schütt F, Oldenburg S, Fischer E, Körner I, Saake B (2013) Steam pretreatment of spruce forest residues: optimal conditions for biogas production and enzymatic hydrolysis. Carbohydr Polym 100:202–210

    Article  PubMed  Google Scholar 

  • Köll P, Borchers G, Metzger JO (1990) Preparative isolation of oligomers with a terminal anhydrosugar unit by thermal degradation of chitin and cellulose. J Anal Appl Pyrol 17:319–327

    Article  Google Scholar 

  • Lawoko M, Henriksson G, Gellerstedt G (2005) Structural differences between the lignin-carbohydrate complexes present in wood and in chemical pulps. Biomacromolecules 6:3467–3473

    Article  CAS  PubMed  Google Scholar 

  • Leppänen K, Spetz P, Pranovich A, Hartonen K, Kitunen V, Ilvesniemi H (2011) Pressurized hot water extraction of Norway spruce hemicelluloses using a flow-through system. Wood Sci Technol 45:223–236

    Article  Google Scholar 

  • Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol. 98:3061–3068

    Article  CAS  PubMed  Google Scholar 

  • Mansouri HR, Omrani P, Pizzi A (2009) Improving the water resistance of linear vibration welded wood joints. J Adhesion Sci Technol 23:63–70

    Article  CAS  Google Scholar 

  • Mansouri HR, Pizzi A, Leban JM, Delmotte L, Lindgren O, Vaziri M (2011) Causes for the improved water resistance in pine wood linear welded joints. J Adhesion Sci Technol 25:1987–1995

    Article  CAS  Google Scholar 

  • Omrani P (2009) Amélioration et nouvelle technologie de soudage linéaire et rotative du bois (Improvement and new linear and rotary welding technology of wood) (In French) Dissertation. University Henri Poincaré, Nancy

    Google Scholar 

  • Omrani P, Pizzi A, Mansouri HR, Leban JM, Delmotte L (2009a) Physico-chemical causes of the extent of water resistance of linearly welded wood joints. J Adhesion Sci Technol 23:827–837

    Article  CAS  Google Scholar 

  • Omrani P, Masson E, Pizzi A, Mansouri HR (2009b) Emission gases in linear vibration welding of wood. J Adhesion Sci Technol 23:85–94

    Article  CAS  Google Scholar 

  • Pizzi A, Despres A, Mansouri HR, Leban JM, Rigolet S (2006) Wood joints by through-dowel rotation welding: microstructure, 13C-NMR and water resistance. J Adhesion Sci Technol 20:427–436

    Article  CAS  Google Scholar 

  • Pizzi A, Mansouri HR, Leban JM, Delmotte L, Pichelin F (2011) Enhancing the exterior performance of wood joined by linear and rotational welding. J Adhesion Sci Technol 25:2717–2730

    Article  CAS  Google Scholar 

  • Puls J (1993) Substrate Analysis of Forest and Agricultural Wastes. In: Saddler JN (ed) Biotechnology in agriculture; bioconversion of forest and agricultural plant residues. CAB Int 13–32

  • Rhême M (2014) Strength and fracture characterization of welded wood joints: effects of moisture and mixed mode loadings. Dissertation, Ecole polytechnique fédérale de Lausanne

  • Rhême M, Botsis J, Cugnoni J, Navi P (2013a) Influence of the moisture content on the fracture characteristics of welded wood joint. Part 1: Mode I fracture. Holzforschung 67:747–754

    Google Scholar 

  • Rhême M, Botsis J, Cugnoni J, Navi P (2013b) Influence of the moisture content on the fracture characteristics of welded wood joint. Part 2: Mode II fracture. Holzforschung 67:755–761

    Google Scholar 

  • Schütt F, Puls J, Saake B (2011) Optimization of steam pretreatment conditions for enzymatic hydrolysis of poplar wood. Holzforschung 65:453–459

    Article  Google Scholar 

  • Sinner M, Puls J (1978) Non-corrosive dye reagent for detection of reducing sugars in borate complex ion-exchange chromatography. J Chrom 156:197–204

    Article  CAS  Google Scholar 

  • Sinner M, Simatupang MH, Dietrichs HH (1975) Automated quantitative-analysis of wood carbohydrates by borate complex ion-exchange chromatography. Wood Sci Technol 9:307–322

    Article  CAS  Google Scholar 

  • Sivonen H, Maunu S, Sundholm F, Jämsä S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56:648–654

    Article  CAS  Google Scholar 

  • Sjöström E (1993) Wood chemistry: fundamentals and application. Academic Press Inc., San Diego

    Google Scholar 

  • Song T, Pranovich A, Sumerskiy I, Holmbom B (2008) Extraction of galactoglucomannan from spruce wood with pressurized hot water. Holzforschung 62:659–666

    Article  CAS  Google Scholar 

  • Song T, Pranovich A, Holmbom B (2011) Effects of pH control with phthalate buffers on hot-water extraction of hemicelluloses from spruce wood. Bioresour Technol 102:10518–10523

    Article  CAS  PubMed  Google Scholar 

  • Stamm B (2006) Development of friction welding of wood—physical, mechanical and chemical studies. Dissertation, École polytechnique fédérale de Lausanne

  • Stamm B, Naterrer J, Navi P (2005a) Joining wood by friction welding. Holz Roh Werkst 63:313–320

    Article  Google Scholar 

  • Stamm B, Windeisen E, Naterrer J, Wegener G (2005b) Thermal behavior of polysaccharides in wood during friction welding. Holz Roh Werkst 63:388–389

    Article  CAS  Google Scholar 

  • Stamm B, Windeisen E, Naterrer J, Wegener G (2006) Chemical investigations on the thermal behavior of wood during friction welding. Wood Sci Technol 40:615–627

    Article  CAS  Google Scholar 

  • Sun Y, Royer M, Diouf PN, Stevanovic T (2010) Chemical changes induced by high-speed rotation welding of wood—application to two canadian hardwood species. J Adhesion Sci Technol 24:1383–1400

    Article  CAS  Google Scholar 

  • Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh Werkst 56:149–153

    Article  CAS  Google Scholar 

  • Vaziri M, Lindgren O, Pizzi A (2011) Influence of welding parameters and wood properties on the water absorption in scots pine joints induced by linear welding. J Adhesion Sci Technol 25:1839–1847

    Article  CAS  Google Scholar 

  • Wagenführ R (2000) Holzatlas (Wood atlas) (In German), 5th edn. Fachbuchverlag Leipzig im Carl Hanser Verlag, Leipzig

    Google Scholar 

  • Willför S, Holmbom B (2004) Isolation and characterisation of water soluble polysaccharides from Norway spruce and Scots pine. Wood Sci Technol 38:173–179

    Article  Google Scholar 

  • Willför S, Sjöholm R, Laine C, Roslund M, Hemming J, Holmbom B (2003) Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Carbohyd Polym 52:175–187

    Article  Google Scholar 

  • Windeisen E, Strobel C, Wegener W (2007) Chemical changes during the production of thermo-treated beech wood. Wood Sci Technol 41:523–536

    Article  CAS  Google Scholar 

  • Xu C, Provanovich A, Hemming J, Holmbom B, Albrecht S, Schols HA, Willför S (2009) Hydrolytic stability of water-soluble spruce O-acetyl galactoglucomannans. Holzforschung 63:61–68

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Swiss National Foundation (SNF Project No. CRSI22_127467/1). The skilled technical assistance of Anna Knöpfle, Nicole Erasmy and Sascha Lebioda is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Pichelin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Placencia Peña, M.I., Deutschle, A.L., Saake, B. et al. Study of the solubility and composition of welded wood material at progressive welding times. Eur. J. Wood Prod. 74, 191–201 (2016). https://doi.org/10.1007/s00107-015-0991-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-015-0991-0

Keywords

Navigation