Skip to main content
Log in

Empiric antimicrobial therapy for early-onset pneumonia in severe trauma patients

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Purpose

The bacterial ecology involved in early pneumonia of severe trauma patients is mostly commensal and would allow wide use of narrow-spectrum antibiotics. We describe risk factors for treatment failure of severe trauma patients’ pneumonia with the use of narrow-spectrum antimicrobial therapy in order to develop a score that could help clinicians to determine which patients might be treated with narrow-spectrum antibiotics.

Methods

A retrospective, observational, monocentric cohort study was conducted of severe trauma patients requiring mechanical ventilation for > 48 h and developing a first episode of microbiologically confirmed pneumonia occurring within the first 10 days after admission.

Results

Overall, 370 patients were included. The resistance rate against narrow-spectrum antibiotics (amoxicillin/clavulanic acid) was 22.7% (84 pneumonia). In a multivariate analysis, two independent risk factors were associated with this resistance: prior antimicrobial therapy ≥ 48 h (OR 4.00; 95 CI [2.39; 6.75]) and age ≥ 30y (OR 2.10; 95 CI [1.21; 3.78]). We created a prediction score that defined patient with one or two risk factors at high risk of resistance. This score presented a sensitivity of 0.92 [0.88; 0.94], a specificity of 0.33 [0.28; 0.38], a positive predictive value of 0.29 [0.24; 0.33] and a negative predictive value of 0.93 [0.90; 0.95].

Conclusion

Simple risk factors may help clinicians to identify severe trauma patients at high risk of pneumonia treatment failure with the use of narrow-spectrum antimicrobial therapy and, thus, use better tailored empiric therapy and limit the use of unnecessary broad-spectrum antimicrobial therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material (data transparency)

Our data are available to ensure transparency.

Code availability (software application or custom code)

Code is available

References

  1. Papazian L, Klompas M, Luyt C-E. Ventilator-associated pneumonia in adults: a narrative review. Intensive Care Med. 2020;46(5):888–906.

    Article  Google Scholar 

  2. Koulenti D, Tsigou E, Rello J. Nosocomial pneumonia in 27 ICUs in Europe: perspectives from the EU-VAP/CAP study. Eur J Clin Microbiol Infect Dis. 2017;36(11):1999–2006.

    Article  CAS  Google Scholar 

  3. Asehnoune K, Seguin P, Allary J, Feuillet F, Lasocki S, Cook F, et al. Hydrocortisone and fludrocortisone for prevention of hospital-acquired pneumonia in patients with severe traumatic brain injury (Corti-TC): a double-blind, multicentre phase 3, randomised placebo-controlled trial. Lancet Respir Med. 2014;2(9):706–16.

    Article  CAS  Google Scholar 

  4. Roquilly A, Torres A, Villadangos JA, Netea MG, Dickson R, Becher B, et al. Pathophysiological role of respiratory dysbiosis in hospital-acquired pneumonia. Lancet Respir Med. 2019;7(8):710–20.

    Article  CAS  Google Scholar 

  5. Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest. 2002;122(1):262–8.

    Article  Google Scholar 

  6. Kuti EL, Patel AA, Coleman CI. Impact of inappropriate antibiotic therapy on mortality in patients with ventilator-associated pneumonia and blood stream infection: a meta-analysis. J Crit Care. 2008;23(1):91–100.

    Article  Google Scholar 

  7. Muscedere JG, Shorr AF, Jiang X, Day A, Heyland DK, Canadian Critical Care Trials Group. The adequacy of timely empiric antibiotic therapy for ventilator-associated pneumonia: an important determinant of outcome. J Crit Care. 2012;27(3):322.e7-14.

    Article  Google Scholar 

  8. Jolivet S, Lolom I, Bailly S, Bouadma L, Lortat-Jacob B, Montravers P, et al. Impact of colonization pressure on acquisition of extended-spectrum β-lactamase-producing Enterobacterales and meticillin-resistant Staphylococcus aureus in two intensive care units: a 19-year retrospective surveillance. J Hosp Infect. 2020;105(1):10–6.

    Article  CAS  Google Scholar 

  9. Vincent J-L, Sakr Y, Singer M, Martin-Loeches I, Machado FR, Marshall JC, et al. Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA [Internet]. 2020 [cité 16 avr 2020]. https://jamanetwork.com/journals/jama/fullarticle/2763669.

  10. Timsit J-F, Bassetti M, Cremer O, Daikos G, de Waele J, Kallil A, et al. Rationalizing antimicrobial therapy in the ICU: a narrative review. Intensive Care Med. 2019;45(2):172–89.

    Article  Google Scholar 

  11. Roquilly A, Feuillet F, Seguin P, Lasocki S, Cinotti R, Launey Y, et al. Empiric antimicrobial therapy for ventilator-associated pneumonia after brain injury. Eur Respir J. 2016;47(4):1219–28.

    Article  CAS  Google Scholar 

  12. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ. 2007;335(7624):806–8.

    Article  Google Scholar 

  13. Leone M, Bouadma L, Bouhemad B, Brissaud O, Dauger S, Gibot S, et al. Pneumonies associées aux soins de réanimation. Anesth Réanim. 2018;4(5):421–41.

    Article  Google Scholar 

  14. CASFM/EUCAST V1.1 Avril 2020 [Internet]. Société Française de Microbiologie. 2020 [cité 2 juill 2020]. https://www.sfm-microbiologie.org/2020/04/07/casfm-eucast-v1-0-avril-2020/.

  15. Allegranzi B, Zayed B, Bischoff P, Kubilay NZ, de Jonge S, de Vries F, et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16(12):e288-303.

    Article  Google Scholar 

  16. Weiss E, Zahar J-R, Lesprit P, Ruppe E, Leone M, Chastre J, et al. Elaboration of a consensual definition of de-escalation allowing a ranking of β-lactams. Clin Microbiol Infect. 2015;21(7):649.e1-10.

    Article  CAS  Google Scholar 

  17. Verhamme KMC, De Coster W, De Roo L, De Beenhouwer H, Nollet G, Verbeke J, et al. Pathogens in early-onset and late-onset intensive care unit-acquired pneumonia. Infect Control Hosp Epidemiol. 2007;28(4):389–97.

    Article  CAS  Google Scholar 

  18. Hoth JJ, Franklin GA, Stassen NA, Girard SM, Rodriguez RJ, Rodriguez JL. Prophylactic antibiotics adversely affect nosocomial pneumonia in trauma patients. J Trauma Acute Care Surg. 2003;55(2):249–54.

    Article  Google Scholar 

  19. Arvanitis M, Anagnostou T, Kourkoumpetis TK, Ziakas PD, Desalermos A, Mylonakis E. The impact of antimicrobial resistance and aging in VAP Outcomes: experience from a large tertiary care center. PLoS One [Internet]. 27 févr 2014 [cité 13 mai 2021];9(2). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937398/.

  20. Trouillet JL, Chastre J, Vuagnat A, Joly-Guillou ML, Combaux D, Dombret MC, et al. Ventilator-associated pneumonia caused by potentially drug-resistant bacteria. Am J Respir Crit Care Med. 1998;157(2):531–9.

    Article  CAS  Google Scholar 

  21. Kalil C, Metersky M, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society | Clinical Infectious Diseases | Oxford Academic. Clin Infect Dis sept. 2016;63(5):61–111.

    Article  Google Scholar 

  22. Foucrier A, Leflon-Ghibut V, Decavele M, Hego C, Moyer J-D, Paugam-Burtz C. Analyse de la sensibilité in vitro de l’écologie bactérienne des pneumonies de patients ventilés: étude de cohorte. Congrès SFAR; 2017.

  23. Kumar A, Safdar N, Kethireddy S, Chateau D. A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med. 2010;38(8):1651–64.

    Article  CAS  Google Scholar 

  24. Harrois A, Soyer B, Gauss T, Hamada S, Raux M, Duranteau J. Prevalence and risk factors for acute kidney injury among trauma patients: a multicenter cohort study. Crit Care [Internet]. 2018.

  25. Ting MH, Radosevich JJ, Weinberg JA, Nailor MD. Narrowing antibiotic spectrum of activity for trauma-associated pneumonia through the use of a disease-specific antibiogram. Trauma Surg Acute Care Open. 2021;6(1):e000602.

    Article  Google Scholar 

  26. Evans CR, Sharpe JP, Swanson JM, Wood GC, Fabian TC, Croce MA, et al. Keeping it simple: impact of a restrictive antibiotic policy for ventilator-associated pneumonia in trauma patients on incidence and sensitivities of causative pathogens. Surg Infect (Larchmt). 2018;19(7):672–8.

    Article  Google Scholar 

  27. Mandell LA, Niederman MS. Aspiration pneumonia. N Engl J Med. 2019;380(7):651–63.

    Article  CAS  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

MG conceptualization/methodology, analysis/statistics-software, data interpretation, writing original draft, approval original draft. DB conceptualization/methodology, analysis/statistics-software, data acquisition/curation, approval original draft. PE conceptualization/methodology, analysis/statistics-software, data acquisition/curation, approval original draft. JDM conceptualization/methodology, data interpretation, approval original draft. AR conceptualization/methodology, data interpretation, approval original draft. TG conceptualization/methodology, data interpretation, approval original draft. AF conceptualization/methodology, analysis/statistics-software, data acquisition/curation, data interpretation, writing original draft, approval original draft.

Corresponding author

Correspondence to Maël Gennequin.

Ethics declarations

Conflict of interest

Maël Gennequin, Delphine Bachelet, Philippine Eloy, Jean Denis Moyer, Antoine Roquilly, Tobias Gauss and Arnaud Foucrier had no conflicts of interest to declare.

Ethics approval

The study received ethical approval from the institutional review board (IRB 00006477) of the Paris Nord University. The data file was declared to the French Data Protection Agency (CNIL, No 911461).

Consent to participate and for publication

No consent is required. All patients were informed about the collection of medical data, by means of displays located at the entrance to the ward and in each inpatient room.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (CSV 238 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gennequin, M., Bachelet, D., Eloy, P. et al. Empiric antimicrobial therapy for early-onset pneumonia in severe trauma patients. Eur J Trauma Emerg Surg 48, 2763–2771 (2022). https://doi.org/10.1007/s00068-021-01870-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-021-01870-2

Keywords

Navigation