Skip to main content
Log in

Surgical advantages of using 3D patient-specific models in high-energy tibial plateau fractures

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Purpose

Treatment of tibial plateau fractures are difficult due to the intra-articular nature of the proximal tibia and extensive involvement of the soft tissue envelope. In this study, we investigated the surgical experience acquired using digitally designed life-size fracture models to guide as a template to place plates and screws in the treatment of tibial plateau fractures and anatomic reduction of joint.

Methods

20 tibial plateau frature patients were divided into two equal surgery groups as conventional versus 3D model assisted. The fracture line angles, depression depth, and preoperative/postoperative Rasmussen knee score were measured for each patient.

Results

The duration of the operation, blood loss volume, turniquet time and number of intraoperative fluoroscopy was 89.5 ± 5.9 min, 160.5 ± 15.3 ml, 74.5 ± 6 min and 10.7 ± 1.76 times, for 3D printing group and 127 ± 14.5 min, 276 ± 44.8 ml, 104.5 ± 5.5 min and 18.5 ± 2.17 times for the conventional group, respectively. 3D model-assisted group indicated significantly shorter operation time, less blood loss volume, shorter turniquet and fluoroscopy times, and better outcome than the conventional one.

Conclusions

The customized 3D model was user friendly, and it provided a radiation-free tibial screw insertion. The use of these models assisted surgical planning, maximized the possibility of ideal anatomical reduction and provided individualized information concerning tibial plateau fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kfuri M, Schatzker J. Revisiting the Schatzker classification of tibial plateau fractures. Injury. 2018;49(12):2252–63.

    Article  Google Scholar 

  2. Subba Rao PSP, Lewis J, Haddad Z, Paringe V, Mohanty K. Three-column classification and Schatzker classification: a three- and two-dimensional computed tomography characterisation and analysis of tibial plateau fractures. Eur J Orthop Surg Traumatol. 2014;24(7):1263–70.

    Article  Google Scholar 

  3. Chen P, Shen H, Wang W, Ni B, Fan Z, Lu H. The morphological features of different Schatzker types of tibial plateau fractures: a three-dimensional computed tomography study. J Orthop Surg Res. 2016;27(11):94.

    Article  Google Scholar 

  4. Suero EM, Hüfner T, Stübig T, Krettek C, Citak M. Use of a virtual 3D software for planning of tibial plateau fracture reconstruction. Injury. 2010;41(6):589–91.

    Article  Google Scholar 

  5. Atesok K, Finkelstein J, Khoury A, Peyser A, Weil Y, Liebergall M, et al. The use of intraoperative three-dimensional imaging (ISO-C-3D) in fixation of intraarticular fractures. Injury. 2007;38(10):1163–9.

    Article  CAS  Google Scholar 

  6. Hall JA, Beuerlein MJ, McKee MD. Open reduction and internal fixation compared with circular fixator application for bicondylar tibial plateau fractures. J Bone Jt Surg Am. 2009;91 Supp2(Part 1):74–88.

    Article  Google Scholar 

  7. Berkson EM, Virkus WW. High-energy tibial plateau fractures. J Am Acad Orthop Surg. 2006;14(1):20–31.

    Article  Google Scholar 

  8. Singleton N, Sahakian V, Muir D. Outcome After Tibial Plateau Fracture: How Important Is Restoration of Articular Congruity? J Orthop Trauma. 2017;31(3):158–63.

    Article  Google Scholar 

  9. Hoekstra H, Kempenaers K, Nijs S. A revised 3-column classification approach for the surgical planning of extended lateral tibial plateau fractures. Eur J Trauma Emerg Surg. 2017;43(5):637–43.

    Article  CAS  Google Scholar 

  10. Wenger D, Petersson K, Rogmark C. Patient-related outcomes after proximal tibial fractures. Int Orthop. 2018;42(12):2925–31.

    Article  Google Scholar 

  11. Krause M, Preiss A, Müller G, Madert J, Fehske K, Neumann MV, et al. Intra-articular tibial plateau fracture characteristics according to the "Ten segment classification". Injury. 2016;47(11):2551–7.

    Article  Google Scholar 

  12. Millar SC, Arnold JB, Thewlis D, Fraysse F, Solomon LB. A systematic literature review of tibial plateau fractures: What classifications are used and how reliable and useful are they? Injury. 2018;49(3):473–90.

    Article  Google Scholar 

  13. Maripuri SN, Rao P, Manoj-Thomas A, Mohanty K. The classification systems for tibial plateau fractures: how reliable are they? Injury. 2008;39(10):1216–21.

    Article  Google Scholar 

  14. Berber R, Lewis CP, Copas D, Forward DP, Moran CG. Postero-medial approach for complex tibial plateau injuries with a postero-medial or postero-lateral shear fragment. Injury. 2014;45(4):757–65.

    Article  Google Scholar 

  15. Sciadini MF, Sims SH. Proximal tibial intra-articular osteotomy for treatment of complex Schatzker type IV tibial plateau fractures with lateral joint line impaction: description of surgical technique and report of nine cases. J Orthop Trauma. 2013;27(1):e18–23.

    Article  Google Scholar 

  16. Frosch KH, Balcarek P, Walde T, Stürmer KM. A new posterolateral approach without fibula osteotomy for the treatment of tibial plateau fractures. J Orthop Trauma. 2010;24(8):515–20.

    Article  PubMed Central  Google Scholar 

  17. Solomon LB, Stevenson AW, Baird RP, Pohl AP. Posterolateral transfibular approach to tibial plateau fractures: technique, results, and rationale. J Orthop Trauma. 2010;24(8):505–14.

    Article  Google Scholar 

  18. Pätzold R, Friederichs J, von Rüden C, Panzer S, Buhren V, Augat P. The pivotal role of the coronal fracture line for a new three-dimensional CT-based fracture classification of bicondylar proximal tibial fractures. Injury. 2017;48(10):2214–20.

    Article  Google Scholar 

  19. Sun H, Zhai QL, Xu YF, Wang YK, Luo CF, Zhang CQ. Combined approaches for fixation of Schatzker type II tibial plateau fractures involving the posterolateral column: a prospective observational cohort study. Arch Orthop Trauma Surg. 2015;135(2):209–21.

    Article  Google Scholar 

  20. Streubel PN, Glasgow D, Wong A, Barei DP, Ricci WM, Gardner MJ. Sagittal plane deformity in bicondylar tibial plateau fractures. J Orthop Trauma. 2011;25:560–5.

    Article  Google Scholar 

  21. Chen P, Lu H, Shen H, Wang W, Ni B, Chen J. Newly designed anterolateral and posterolateral locking anatomic plates for lateral tibial plateau fractures: a finite element study. J Orthop Surg Res. 2017;12(1):35.

    Article  PubMed Central  Google Scholar 

  22. Zhu Y, Yang G, Luo CF, Smith WR, Hu CF, Gao H, et al. Computed tomography-based Three-Column Classification in tibial plateau fractures: introduction of its utility and assessment of its reproducibility. J Trauma Acute Care Surg. 2012;73:731–7.

    Article  Google Scholar 

  23. Yang P, Du D, Zhou Z, Lu N, Fu Q, Ma J, et al. 3D printing-assisted osteotomy treatment for the malunion of lateral tibial plateau fracture. Injury. 2016;47(12):2816–21.

    Article  Google Scholar 

  24. Zheng W, Tao Z, Lou Y, Feng Z, Li H, Cheng L, et al. Comparison of the conventional surgery and the surgery assisted by 3d printing technology in the treatment of calcaneal fractures. J Invest Surg. 2017;19:1–11.

    Google Scholar 

  25. Lal H, Patralekh MK. 3D printing and its applications in orthopaedic trauma: a technological marvel. J Clin Orthop Trauma. 2018;9(3):260–8.

    Article  PubMed Central  Google Scholar 

  26. Vaishya R, Patralekh MK, Vaish A, Agarwal AK, Vijay V. Publication trends and knowledge mapping in 3D printing in orthopaedics. J Clin Orthop Trauma. 2018;9:194–201.

    Article  PubMed Central  Google Scholar 

  27. Chen F, Huang X, Ya Y, Ma F, Qian Z, Shi J, et al. Finite element analysis of intramedullary nailing and double locking plate for treating extra-articular proximal tibial fractures. J Orthop Surg Res. 2018;13(1):12.

    Article  PubMed Central  Google Scholar 

  28. Doornberg JN, Rademakers MV, van den Bekerom MP, Kerkhoffs GM, Ahn J, Steller EP, et al. Two-dimensional and three-dimensional computed tomography for the classification and characterisation of tibial plateau fractures. Injury. 2011;42(12):416–25.

    Article  Google Scholar 

  29. Giannetti S, Bizzotto N, Stancati A, Santucci A. Minimally invasive fixation in tibial plateau fractures using a pre-operative and intra-operative real size 3D printing. Injury. 2017;48(3):784–8.

    Article  Google Scholar 

  30. Carrera I, Gelber PE, Chary G, González-Ballester MA, Monllau JC, Noailly J. Fixation of a split fracture of the lateral tibial plateau with a locking screw plate instead of cannulated screws would allow early weight bearing: a computational exploration. Int Orthop. 2016;40(10):2163–9.

    Article  Google Scholar 

  31. Lou Y, Cai L, Wang C, Tang Q, Pan T, Guo X, et al. Comparison of traditional surgery and surgery assisted by three-dimensional printing technology in the treatment of tibial plateau fractures. Int Orthop. 2017;41(9):1875–80.

    Article  Google Scholar 

  32. Millán-Billi A, Gómez-Masdeu M, Ramírez-Bermejo E, Ibañez M, Gelber PE. What is the most reproducible classification system to assess tibial plateau fractures ? Int Orthop. 2017;41(6):1251–6.

    Article  Google Scholar 

  33. Yang L, Grottkau B, He Z, Ye C. Three dimensional printing technology and materials for treatment of elbow fractures. Int Orthop. 2017;41(11):2381–7.

    Article  Google Scholar 

  34. Zang CW, Zhang JL, Meng ZZ, et al. 3D printing technology in planning thumb reconstructions with second toe transplant. Orthop Surg. 2017;9(2):e215–e220220.

    Article  Google Scholar 

  35. Hurson C, Tansey A, O'Donnchadha B, Nicholson P, Rice J, McElwain J. Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures. Injury. 2007;38(10):1158–62.

    Article  CAS  Google Scholar 

  36. Bagaria V, Deshpande S, Rasalkar DD, Kuthe A, Paunipagar BK. Use of rapid prototyping and three-dimensional reconstruction modeling in the management of complex fractures. Eur J Radiol. 2011;80(3):814–20.

    Article  Google Scholar 

  37. Kim JW, Lee Y, Seo J, Park JH, Seo YM, Kim SS, et al. Clinical experience with three-dimensional printing techniques in orthopedic trauma. J Orthop Sci. 2018;23(2):383–8.

    Article  Google Scholar 

  38. Li B, He J, Zhu Z, Zhou D, Hao Z, Wang Y, Li Q. Comparison of 3D C-arm fluoroscopy and 3D image-guided navigation for minimally invasive pelvic surgery. Int J Comput Assist Radiol Surg. 2015;10(10):1527–34.

    Article  Google Scholar 

  39. Huang H, Hsieh MF, Zhang G, Ouyang H, Zeng C, Yan B, Xu J, et al. Improved accuracy of 3D-printed navigational template during complicated tibial plateau fracture surgery. Australas Phys Eng Sci Med. 2015;38(1):109–17.

    Article  PubMed Central  Google Scholar 

  40. Zhang W, Ji Y, Wang X, Liu J, Li D. Can the recovery of lower limb fractures be achieved by use of 3D printing mirror model ? Injury. 2017;48(11):2485–95.

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to Assoc. Prof. Tahsin Oguz Başokcu, Faculty of Education Department of Measurement and Evaluation in Education, Ege University, for sincere efforts and statistical evaluations.

Author information

Authors and Affiliations

Authors

Contributions

Study design: KA and AMO. Data assembly: OS. Data analysis: MAO and OS. Final approval of the manuscript: FG and KA.

Corresponding author

Correspondence to Figen Govsa.

Ethics declarations

Conflict of interest

Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest related to the submitted article.

Ethical approval

This study was approved by our institutional review and ethics board.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, A.M., Suer, O., Derin, O. et al. Surgical advantages of using 3D patient-specific models in high-energy tibial plateau fractures. Eur J Trauma Emerg Surg 46, 1183–1194 (2020). https://doi.org/10.1007/s00068-020-01378-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-020-01378-1

Keywords

Navigation