Skip to main content

Advertisement

Log in

Synergistic effect of PAF inhibition and X-ray irradiation in non-small cell lung cancer cells

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

This article has been updated

Abstract

Purpose

Proliferating cell nuclear antigen-associated factor (PAF) is involved in cancer cell growth and associated with cell death induced by ultraviolet (UV) radiation. However, the contribution of PAF to radiotherapy sensitivity in non-small cell lung cancer (NSCLC) is unknown. The aim of this study was to investigate the relationship between PAF expression and radiotherapy response in NSCLC.

Methods

Associations between PAF expression and patient survival outcomes were evaluated using publicly available online gene expression datasets. RNA interference was performed to knockdown PAF expression in the NSCLC cells. The effects of PAF knockdown on cell proliferation, migration, apoptosis, DNA damage, and activation of MEK/ERK and Wnt/β-catenin signaling pathways following X‑ray irradiation were evaluated in vitro.

Results

PAF was found to be overexpressed in lung cancer tissues compared with normal samples, and elevated PAF expression was significantly correlated with inferior patient survival. In vitro, knockdown of PAF inhibited cell proliferation, cell apoptosis, and migration induced by X‑ray irradiation. Moreover, X‑ray-induced intracellular DNA strand damage was more obvious following PAF knockdown. Additionally, PAF knockdown inhibited activation of the MEK/ERK and Wnt/β-catenin signaling pathways in X‑ray-irradiated A549 cells.

Conclusion

These data demonstrate that reduced expression of PAF enhances radiosensitivity in NSCLC cells. Mechanistically, inhibition of the MEK/ERK and Wnt/β-catenin signaling pathways caused by PAF interference may lead to impaired cell function and enhance sensitivity to X‑rays. Targeting PAF may therefore serve as a potential therapeutic strategy to increase the efficiency of radiotherapy in NSCLC patients, ultimately improving patient survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 29 January 2021

    In the PDF the order of the email addresses of the corresponding authors was changed.

References

  1. Chen W, Zheng R, Baade PD et al (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66(2):115–132

    Article  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30

    Article  Google Scholar 

  3. Miller KD, Nogueira L, Mariotto AB et al (2019) Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin 69(5):363–385

    Article  Google Scholar 

  4. Triggiani L, Colosini A, Buglione M et al (2018) Exploring the role of enzalutamide in combination with radiation therapy: an in vitro study. Anticancer Res 38(6):3487–3492

    Article  CAS  Google Scholar 

  5. Changizi V, Bahrami M, Esfahani M et al (2017) Prevention of γ‑radiation-induced DNA damage in human lymphocytes using a serine-magnesium sulfate mixture. Sultan Qaboos Univ Med J 17(2):e162–e167

    PubMed  PubMed Central  Google Scholar 

  6. Murad H, Alghamian Y, Aljapawe A et al (2018) Effects of ionizing radiation on the viability and proliferative behavior of the human glioblastoma T98G cell line. BMC Res Notes 11(1):330

    Article  Google Scholar 

  7. Skrzypski M, Jassem J (2018) Consolidation systemic treatment after radiochemotherapy for unresectable stage III non-small cell lung cancer. Cancer Treat Rev 66:114–121

    Article  Google Scholar 

  8. Nagata Y, Kimura T (2018) Stereotactic body radiotherapy (SBRT) for stage I lung cancer. Jpn J Clin Oncol 48(5):405–409

    Article  Google Scholar 

  9. Ricardi U, Badellino S, Filippi AR (2015) Stereotactic body radiotherapy for early stage lung cancer: history and updated role. Lung Cancer 90(3):388–396

    Article  Google Scholar 

  10. Maier P, Hartmann L, Wenz F et al (2016) Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization. Int J Mol Sci 17(1):102

    Article  Google Scholar 

  11. Yu P, Huang B, Shen M et al (2001) p15PAF, a novel PCNA associated factor with increased expression in tumor tissues. Oncogene 20(4):484–489

    Article  CAS  Google Scholar 

  12. Zhang T, Guo J, Gu J et al (2019) KIAA0101 is a novel transcriptional target of FoxM1 and is involved in the regulation of hepatocellular carcinoma microvascular invasion by regulating epithelial-mesenchymal transition. J Cancer 10(15):3501–3516

    Article  CAS  Google Scholar 

  13. Kato T, Daigo Y, Aragaki M et al (2012) Overexpression of KIAA0101 predicts poor prognosis in primary lung cancer patients. Lung Cancer 75(1):110–118

    Article  Google Scholar 

  14. Wang X, Jung Y, Jun S et al (2016) PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun 7(1):10633

    Article  CAS  Google Scholar 

  15. Jin C, Liu Z, Li Y et al (2018) PCNA-associated factor P15PAF, targeted by FOXM1, predicts poor prognosis in high-grade serous ovarian cancer patients. Int J Cancer 143(11):2973–2984

    Article  CAS  Google Scholar 

  16. Turchi L, Fareh M, Aberdam E et al (2009) ATF3 and p15PAF are novel gatekeepers of genomic integrity upon UV stress. Cell Death Differ 16(5):728–737

    Article  CAS  Google Scholar 

  17. Struchkov VA, Demidova NI, Strazhevskaia NB (1997) Primary gamma-induced unrepairable DNA damage in HeLa cells. Biull Eksp Biol Med 124(7):53–56

    CAS  PubMed  Google Scholar 

  18. Yan R, Zhu K, Dang C et al (2016) Paf15 expression correlates with rectal cancer prognosis, cell proliferation and radiation response. Oncotarget 7(25):38750–38761

    Article  Google Scholar 

  19. Chandrashekar DS, Bashel B, Balasubramanya S et al (2017) UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19(8):649–658

    Article  CAS  Google Scholar 

  20. Gyorffy B, Surowiak P, Budczies J et al (2013) Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One 8(12):e82241

    Article  Google Scholar 

  21. Steel GG, Deacon JM, Duchesne GM et al (1987) The dose-rate effect in human tumour cells. Radiother Oncol 9(4):299–310

    Article  CAS  Google Scholar 

  22. Hwang JH, Joo JC, Kim DJ et al (2016) Cordycepin promotes apoptosis by modulating the ERK-JNK signaling pathway via DUSP5 in renal cancer cells. Am J Cancer Res 6(8):1758–1771

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nusse R, Clevers H (2017) Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169(6):985–999

    Article  CAS  Google Scholar 

  24. Bradley JD, Paulus R, Komaki R et al (2015) Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol 16(2):187–199

    Article  CAS  Google Scholar 

  25. Emanuele MJ, Ciccia A, Elia AE et al (2011) Proliferating cell nuclear antigen (PCNA)-associated KIAA0101/PAF15 protein is a cell cycle-regulated anaphase-promoting complex/cyclosome substrate. Proc Natl Acad Sci USA 108(24):9845–9850

    Article  CAS  Google Scholar 

  26. Povlsen LK, Beli P, Wagner SA et al (2012) Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. Nat Cell Biol 14(10):1089–1098

    Article  CAS  Google Scholar 

  27. Li G, Luna C, Gonzalez P (2016) miR-183 inhibits UV-induced DNA damage repair in human trabecular meshwork cells by targeting of KIAA0101. Invest Ophthalmol Vis Sci 57(4):2178–2186

    Article  CAS  Google Scholar 

  28. Ong D, Hu B, Ho YW et al (2017) PAF promotes stemness and radioresistance of glioma stem cells. Proc Natl Acad Sci USA 114(43):E9086–E9095

    Article  CAS  Google Scholar 

  29. Brunner TB, Hahn SM, McKenna WG et al (2004) Radiation sensitization by inhibition of activated Ras. Strahlenther Onkol 180(11):731–740

    Article  Google Scholar 

  30. Marvaso G, Barone A, Amodio N et al (2014) Sphingosine analog fingolimod (FTY720) increases radiation sensitivity of human breast cancer cells in vitro. Cancer Biol Ther 15(6):797–805

    Article  Google Scholar 

  31. Wang Q, Wang Y, Li Y et al (2013) NS5ATP9 contributes to inhibition of cell proliferation by hepatitis C virus (HCV) nonstructural protein 5A (NS5A) via MEK/extracellular signal regulated kinase (ERK) pathway. Int J Mol Sci 14(5):10539–10551

    Article  Google Scholar 

  32. Chen K, Chen L, Li L et al (2020) A positive feedback loop between Wnt/beta-catenin signaling and hTERT regulates the cancer stem cell-like traits in radioresistant nasopharyngeal carcinoma cells. J Cell Biochem. https://doi.org/10.1002/jcb.29681

    Article  PubMed  Google Scholar 

  33. Wu D, Li L, Yan W (2016) Knockdown of TC‑1 enhances radiosensitivity of non-small cell lung cancer via the Wnt/beta-catenin pathway. Biol Open 5(4):492–498

    Article  CAS  Google Scholar 

  34. Wen J, Xiong K, Aili A et al (2020) PEX5, a novel target of microRNA-31-5p, increases radioresistance in hepatocellular carcinoma by activating Wnt/beta-catenin signaling and homologous recombination. Theranostics 10(12):5322–5340

    Article  CAS  Google Scholar 

Download references

Funding

This research project was supported by the National Natural Science Foundation of China (Grant No. 81402540; Grant No. 81672972) and the Medical and Health Science Foundation of Zhejiang Province (Grant No. 2018255396).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: M Chen; administrative support: P Zhang; provision of study materials: X Hu; data analysis and interpretation: Y Chen, Y Jin; manuscript writing: all authors; final approval of manuscript: all authors.

Corresponding authors

Correspondence to Ming Chen or Xiao Hu.

Ethics declarations

Conflict of interest

Y. Chen, Y. Jin, H. Ying, P. Zhang, M. Chen, and X. Hu declare that they have no competing interests.

Caption Electronic Supplementary Material

66_2020_1708_MOESM1_ESM.pdf

Supplementary Fig.1 Knockdown of PAF in H358 cells inhibits cell proliferation and enhances cell apoptosis in response to radiation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Jin, Y., Ying, H. et al. Synergistic effect of PAF inhibition and X-ray irradiation in non-small cell lung cancer cells. Strahlenther Onkol 197, 343–352 (2021). https://doi.org/10.1007/s00066-020-01708-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-020-01708-7

Keywords

Navigation