Skip to main content

Advertisement

Log in

High expression of Rad51c predicts poor prognostic outcome and induces cell resistance to cisplatin and radiation in non-small cell lung cancer

  • Original Article
  • Published:
Tumor Biology

Abstract

Rad51c is critical for homologous recombination repair and genomic stability and may play roles in tumorigenesis and cancer therapy. We investigated the expression level and clinical significance of Rad51c in non-small cell lung cancer (NSCLC) and determined the effect of Rad51c on NSCLC cell chemosensitivity and radiosensitivity. Rad51c expression was detected using immunohistochemistry and was higher in NSCLC patient samples than in adjacent normal tissues. Kaplan–Meier analysis revealed that high Rad51c expression was an independent predictor of short overall survival (OS) and disease-free survival (DFS) in NSCLC patients receiving chemotherapy and/or radiotherapy. Furthermore, Rad51c knockdown increased the killing effect of ionizing radiation (IR) and enhanced cisplatin-induced apoptotic cells in NSCLC cells by disrupting the repair of cisplatin- and IR-induced DNA damage. In addition, ectopic expression of Rad51c dramatically enhanced NSCLC cell resistance to cisplatin and radiotherapy. These findings suggest that increased expression of Rad51c may confer resistance to chemotherapy and/or radiotherapy of NSCLC, and also be an independent prognostic factor for patient outcome. Therefore, targeting Rad51c may represent an improved therapeutic strategy for NSCLC patients with locally advanced disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.

    Article  PubMed  Google Scholar 

  2. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, Alteri R, Robbins AS, Jemal A. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2014;64:252–71.

    Article  PubMed  Google Scholar 

  3. Pignon JP, Tribodet H, Scagliotti GV, Douillard JY, Shepherd FA, Stephens RJ, Dunant A, Torri V, Rosell R, Seymour L, Spiro SG, Rolland E, Fossati R, Aubert D, Ding K, Waller D, Le Chevalier T, Group LC. Lung adjuvant cisplatin evaluation: a pooled analysis by the lace collaborative group. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2008;26:3552–9.

    Article  Google Scholar 

  4. Feliciano J, Feigenberg S, Mehta M. Chemoradiation for definitive, preoperative, or postoperative therapy of locally advanced non-small cell lung cancer. Cancer J. 2013;19:222–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kavanagh JN, Redmond KM, Schettino G, Prise KM. DNA double strand break repair: a radiation perspective. Antioxid Redox Signal. 2013;18:2458–72.

    Article  CAS  PubMed  Google Scholar 

  7. Helleday T, Lo J, van Gent DC, Engelward BP. DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair. 2007;6:923–35.

    Article  CAS  PubMed  Google Scholar 

  8. Aparicio T, Baer R, Gautier J. DNA double-strand break repair pathway choice and cancer. DNA repair. 2014;19:169–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 2012;47:497–510.

    Article  CAS  PubMed  Google Scholar 

  10. Fiume L. Comment on: targeting homologous recombination-mediated DNA repair in cancer. Expert Opin Ther Targets. 2014;18:833.

    Article  PubMed  Google Scholar 

  11. Helleday T. Homologous recombination in cancer development, treatment and development of drug resistance. Carcinogenesis. 2010;31:955–60.

    Article  CAS  PubMed  Google Scholar 

  12. Birkelbach M, Ferraiolo N, Gheorghiu L, Pfaffle HN, Daly B, Ebright MI, Spencer C, O'Hara C, Whetstine JR, Benes CH, Sequist LV, Zou L, Dahm-Daphi J, Kachnic LA, Willers H: Detection of impaired homologous recombination repair in nsclc cells and tissues. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 2013;8:279–286.

  13. Cheng J, Liu W, Zeng X, Zhang B, Guo Y, Qiu M, Jiang C, Wang H, Wu Z, Meng M, Zhuang H, Zhao L, Hao J, Cai Q, Xie D, Pang Q, Wang P, Yuan Z, Qian D. Xrcc3 is a promising target to improve the radiotherapy effect of esophageal squamous cell carcinoma. Cancer Sci. 2015

  14. Richardson C. Rad51, genomic stability, and tumorigenesis. Cancer Lett. 2005;218:127–39.

    Article  CAS  PubMed  Google Scholar 

  15. Klein HL. The consequences of rad51 overexpression for normal and tumor cells. DNA repair. 2008;7:686–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nagathihalli NS, Nagaraju G: Rad51 as a potential biomarker and therapeutic target for pancreatic cancer. Biochim Biophys Acta 2011;1816:209–218.

  17. Carvalho JF, Kanaar R. Targeting homologous recombination-mediated DNA repair in cancer. Expert Opin Ther Targets. 2014;18:427–58.

    Article  CAS  PubMed  Google Scholar 

  18. Daley JM, Kwon Y, Niu H, Sung P. Investigations of homologous recombination pathways and their regulation. The Yale Journal of Biology and Medicine. 2013;86:453–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Somyajit K, Subramanya S, Nagaraju G. Rad51c: a novel cancer susceptibility gene is linked to fanconi anemia and breast cancer. Carcinogenesis. 2010;31:2031–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Y, Masson JY, Shah R, O'Regan P, West SC. Rad51c is required for Holliday junction processing in mammalian cells. Science. 2004;303:243–6.

    Article  CAS  PubMed  Google Scholar 

  21. Badie S, Liao C, Thanasoula M, Barber P, Hill MA, Tarsounas M. Rad51c facilitates checkpoint signaling by promoting chk2 phosphorylation. J Cell Biol. 2009;185:587–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Somyajit K, Subramanya S, Nagaraju G. Distinct roles of fanco/rad51c protein in DNA damage signaling and repair: implications for fanconi anemia and breast cancer susceptibility. J Biol Chem. 2012;287:3366–80.

    Article  CAS  PubMed  Google Scholar 

  23. Somyajit K, Saxena S, Babu S, Mishra A, Nagaraju G. Mammalian rad51 paralogs protect nascent DNA at stalled forks and mediate replication restart. Nucleic Acids Res. 2015;43:9835–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li J, Meeks H, Feng BJ, Healey S, Thorne H, Makunin I, Ellis J, kConFab I, Campbell I, Southey M, Mitchell G, Clouston D, Kirk J, Goldgar D, Chenevix-Trench G. Targeted massively parallel sequencing of a panel of putative breast cancer susceptibility genes in a large cohort of multiple-case breast and ovarian cancer families. J Med Genet. 2016;53:34–42.

    Article  CAS  PubMed  Google Scholar 

  25. Couch FJ, Hart SN, Sharma P, Toland AE, Wang X, Miron P, Olson JE, Godwin AK, Pankratz VS, Olswold C, Slettedahl S, Hallberg E, Guidugli L, Davila JI, Beckmann MW, Janni W, Rack B, Ekici AB, Slamon DJ, Konstantopoulou I, Fostira F, Vratimos A, Fountzilas G, Pelttari LM, Tapper WJ, Durcan L, Cross SS, Pilarski R, Shapiro CL, Klemp J, Yao S, Garber J, Cox A, Brauch H, Ambrosone C, Nevanlinna H, Yannoukakos D, Slager SL, Vachon CM, Eccles DM, Fasching PA. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2015;33:304–11.

    Article  CAS  Google Scholar 

  26. Song H, Dicks E, Ramus SJ, Tyrer JP, Intermaggio MP, Hayward J, Edlund CK, Conti D, Harrington P, Fraser L, Philpott S, Anderson C, Rosenthal A, Gentry-Maharaj A, Bowtell DD, Alsop K, Cicek MS, Cunningham JM, Fridley BL, Alsop J, Jimenez-Linan M, Hogdall E, Hogdall CK, Jensen A, Kjaer SK, Lubinski J, Huzarski T, Jakubowska A, Gronwald J, Poblete S, Lele S, Sucheston-Campbell L, Moysich KB, Odunsi K, Goode EL, Menon U, Jacobs IJ, Gayther SA, Pharoah PD. Contribution of germline mutations in the rad51b, rad51c, and rad51d genes to ovarian cancer in the population. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2015;33:2901–7.

    Article  CAS  Google Scholar 

  27. Meindl A, Hellebrand H, Wiek C, Erven V, Wappenschmidt B, Niederacher D, Freund M, Lichtner P, Hartmann L, Schaal H, Ramser J, Honisch E, Kubisch C, Wichmann HE, Kast K, Deissler H, Engel C, Muller-Myhsok B, Neveling K, Kiechle M, Mathew CG, Schindler D, Schmutzler RK, Hanenberg H. Germline mutations in breast and ovarian cancer pedigrees establish rad51c as a human cancer susceptibility gene. Nat Genet. 2010;42:410–4.

    Article  CAS  PubMed  Google Scholar 

  28. Osorio A, Endt D, Fernandez F, Eirich K, de la Hoya M, Schmutzler R, Caldes T, Meindl A, Schindler D, Benitez J. Predominance of pathogenic missense variants in the rad51c gene occurring in breast and ovarian cancer families. Hum Mol Genet. 2012;21:2889–98.

    Article  CAS  PubMed  Google Scholar 

  29. Kalvala A, Gao L, Aguila B, Reese T, Otterson GA, Villalona-Calero MA, Duan W. Overexpression of rad51c splice variants in colorectal tumors. Oncotarget. 2015;6:8777–87.

    Article  PubMed  Google Scholar 

  30. Cai MY, Tong ZT, Zheng F, Liao YJ, Wang Y, Rao HL, Chen YC, QL W, Liu YH, Guan XY, Lin MC, Zeng YX, Kung HF, Xie D. Ezh2 protein: a promising immunomarker for the detection of hepatocellular carcinomas in liver needle biopsies. Gut. 2011;60:967–76.

    Article  CAS  PubMed  Google Scholar 

  31. Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B, Petalcorin MI, O'Connor KW, Konstantinopoulos PA, Elledge SJ, Boulton SJ, Yusufzai T, D'Andrea AD. Homologous-recombination-deficient tumours are dependent on poltheta-mediated repair. Nature. 2015;518:258–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wooster R, Weber BL. Breast and ovarian cancer. N Engl J Med. 2003;348:2339–47.

    Article  CAS  PubMed  Google Scholar 

  33. Werner H, Bruchim I. Igf-1 and brca1 signalling pathways in familial cancer. The Lancet Oncology. 2012;13:e537–44.

    Article  CAS  PubMed  Google Scholar 

  34. Lieberman R, Xiong D, James M, Han Y, Amos CI, Wang L, et al. Functional characterization of rad52 as a lung cancer susceptibility gene in the 12p13.33 locus. Molecular Carcinogenesis. 2015

  35. Qiao GB, YL W, Yang XN, Zhong WZ, Xie D, Guan XY, Fischer D, Kolberg HC, Kruger S, Stuerzbecher HW. High-level expression of rad51 is an independent prognostic marker of survival in non-small-cell lung cancer patients. Br J Cancer. 2005;93:137–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V, Neveling K, Endt D, Kesterton I, Autore F, Fraternali F, Freund M, Hartmann L, Grimwade D, Roberts RG, Schaal H, Mohammed S, Rahman N, Schindler D, Mathew CG. Mutation of the rad51c gene in a fanconi anemia-like disorder. Nat Genet. 2010;42:406–9.

    Article  CAS  PubMed  Google Scholar 

  37. Salama JK, Vokes EE. New radiotherapy and chemoradiotherapy approaches for non-small-cell lung cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2013;31:1029–38.

    Article  CAS  Google Scholar 

  38. Takenaka T, Yoshino I, Kouso H, Ohba T, Yohena T, Osoegawa A, Shoji F, Maehara Y. Combined evaluation of rad51 and ercc1 expressions for sensitivity to platinum agents in non-small cell lung cancer. International journal of cancer Journal international du cancer. 2007;121:895–900.

    Article  CAS  PubMed  Google Scholar 

  39. Richardson C, Stark JM, Ommundsen M, Jasin M. Rad51 overexpression promotes alternative double-strand break repair pathways and genome instability. Oncogene. 2004;23:546–53.

    Article  CAS  PubMed  Google Scholar 

  40. Cheng J, Liu W, Zeng X, Zhang B, Guo Y, Qiu M, Jiang C, Wang H, Wu Z, Meng M, Zhuang H, Zhao L, Hao J, Cai Q, Xie D, Pang Q, Wang P, Yuan Z, Qian D. Xrcc3 is a promising target to improve the radiotherapy effect of esophageal squamous cell carcinoma. Cancer Sci. 2015;106:1678–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Suwaki N, Klare K, Tarsounas M: Rad51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis. Seminars in cell & developmental biology 2011;22:898–905.

Download references

Acknowledgments

This study was supported by Doctor Supporting Foundation of Tianjin Medical University Cancer Institute and Hospital (Nos. B1302 and B1305) and the National Nature Science Foundation of China (Nos. 81401948, 81472182, and 81472797).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Qian, Qingsong Pang or Ping Wang.

Ethics declarations

Conflicts of interest

None

Additional information

Xiuli Chen, Dong Qian, and Jingjing Cheng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Qian, D., Cheng, J. et al. High expression of Rad51c predicts poor prognostic outcome and induces cell resistance to cisplatin and radiation in non-small cell lung cancer. Tumor Biol. 37, 13489–13498 (2016). https://doi.org/10.1007/s13277-016-5192-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5192-x

Keywords

Navigation