Skip to main content

Advertisement

Log in

Adenosine can thwart antitumor immune responses elicited by radiotherapy

Therapeutic strategies alleviating protumor ADO activities

Adenosine kann Strahlentherapie-vermittelte Immunantworten gegen Tumore konterkarieren

  • Review Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

By studying the bioenergetic status we could show that the development of tumor hypoxia is accompanied, apart from myriad other biologically relevant effects, by a substantial accumulation of adenosine (ADO). ADO has been shown to act as a strong immunosuppressive agent in tumors by modulating the innate and adaptive immune system. In contrast to ADO, standard radiotherapy (RT) can either stimulate or abrogate antitumor immune responses. Herein, we present ADO-mediated mechanisms that may thwart antitumor immune responses elicited by RT.

Materials and methods

An overview of the generation, accumulation, and ADO-related multifaceted inhibition of immune functions, contrasted with the antitumor immune effects of RT, is provided.

Results

Upon hypoxic stress, cancer cells release ATP into the extracellular space where nucleotides are converted into ADO by hypoxia-sensitive, membrane-bound ectoenzymes (CD39/CD73). ADO actions are mediated upon binding to surface receptors, mainly A2A receptors on tumor and immune cells. Receptor activation leads to a broad spectrum of strong immunosuppressive properties facilitating tumor escape from immune control. Mechanisms include (1) impaired activity of CD4 + T and CD8 + T, NK cells and dendritic cells (DC), decreased production of immuno-stimulatory lymphokines, and (2) activation of Treg cells, expansion of MDSCs, promotion of M2 macrophages, and increased activity of major immunosuppressive cytokines. In addition, ADO can directly stimulate tumor proliferation and angiogenesis.

Conclusion

ADO mechanisms described can thwart antitumor immune responses elicited by RT. Therapeutic strategies alleviating tumor-promoting activities of ADO include respiratory hyperoxia or mild hyperthermia, inhibition of CD39/CD73 ectoenzymes or blockade of A2A receptors, and inhibition of ATP-release channels or ADO transporters.

Zusammenfassung

Hintergrund

Untersuchungen des bioenergetischen Status ergaben, dass Tumorhypoxie neben vielen anderen bedeutsamen biologischen Effekten zu einem starken Adenosinanstieg (ADO) im Tumorgewebe führt. ADO kann die immunologische Tumorabwehr im Gegensatz zur Strahlentherapie (RT), welche die Immunantwort gegen Tumoren sowohl stimulieren als auch inhibieren kann, erheblich einschränken. Dargestellt werden die ADO-vermittelten Mechanismen, die der durch RT ausgelösten Immunabwehr entgegenwirken.

Material und Methoden

Beschrieben werden die Bildung und Anreicherung von ADO im Tumorgewebe sowie dessen vielfältige Hemmwirkungen auf die immunologische Tumorabwehr in Gegenüberstellung zur RT-induzierten Immunstimulation.

Ergebnisse

Hypoxische Tumorzellen exportieren ATP in den Extrazellularraum, wo es durch die hypoxiegesteuerten, membranständigen Ektoenzyme CD39/CD73 abgebaut wird. Das gebildete ADO bindet an spezifische Membranrezeptoren von Immun- und Tumorzellen und löst dadurch die adenosinerge Signalkaskade aus. Diese hat starke immunsuppressive Wirkung sowohl (1) durch Hemmung von tumorinfiltrierenden CD4 + und CD8 + T-, NK- und dendritischen Zellen sowie immunstimulierender Lymphokinsekretion, als auch (2) durch Aktivierung von Treg- und myeloischen Vorläuferzellen (MDSCs), M2-Polarisation von Makrophagen und Sekretionssteigerung immunsuppressiver Zytokine. Darüber hinaus fördert ADO Tumorzellproliferation und Angiogenese.

Schlussfolgerung

Die ADO-vermittelte Immunsuppression wirkt der RT-induzierten Immunstimulation entgegen. Um eine ADO-bedingte Tumorevasion zu vermeiden bzw. abzuschwächen, stehen derzeit folgende Therapieoptionen zur Verfügung: Atmung sauerstoffreicher Gasgemische und/oder milde Hyperthermie, Hemmung der CD39/CD73-Ektoenzyme und A2A-Rezeptorblockade, Hemmung des ATP-Kanals bzw. ADO-Transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADO:

Adenosine

ADP:

Adenosine diphosphate

AMP:

Adenosine monophosphate

APC:

Antigen presenting cell

AR:

Adenosine receptor

ATM:

Ataxia telangiectasia mutant

ATP:

Adenosine triphosphate

bFGF:

Basic fibroblast growth factor

cAMP:

Cyclic adenosine monophosphate

CD39:

Ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1)

CD73:

Ecto 5’-nucleotidase

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

CXCL9:

Chemokine (C-X-C motif) ligand 9

CXCL10:

Chemokine (C-X-C motif) ligand 10

CXCL16:

Chemokine (C-X-C motif) ligand 16

DAMP:

Danger-associated molecule pattern

DC:

Dendritic cell

DNA:

Deoxyribonucleic acid

EC:

Endothelial cell

ENT-1:

Equilibrative nucleoside transporter 1 (ADO transporter)

ERK1/2:

Extracellular signal-regulated protein kinases 1 and 2

FAS:

Member of the TNF receptor family (CD95)

FoxP3:

Forkhead box P3

G-protein:

Guanine nucleotide-binding protein

HIF-1 α:

Hypoxia-inducible factor 1-alpha

HMGB1:

High mobility group box 1 protein

HPLC:

High-performance liquid chromatography

HSP:

Heat shock protein

ICAM-1:

Intercellular adhesion molecule 1 (CD54)

IC:

Immune cell

IFN-γ:

Interferon gamma

IL-1β/-2/-8/-12:

Interleukin 1 beta/-2/-8/-12

M1 cell:

Antitumor macrophage

M2 cell:

Pro-tumorigenic macrophage

mAb:

Monoclonal antibody

MDSC:

Myeloid-derived suppressor cells

MHC:

Major histocompatibility antigen (complex)

MICA/B:

MHC class I polypeptide-related sequence A/B

NK cell:

Natural killer cell

Panx-1:

Pannexin-1 (ATP-channel)

PD-1:

Programmed cell death 1 protein

PD-L1:

PD-1 ligand

POM-1:

Na-polyoxotungstate

RNA:

Ribonucleic acid

RT:

Radiotherapy

shRNA:

Short hairpin RNA

siRNA:

Small interfering RNA

TC:

Tumor cell

Teff:

Effector T cell

TGF-β:

Transforming growth factor beta

Th1:

Helper T cell

TLR-4/-7/-9:

Toll-like receptor -4/-7/-9

TNF-α:

Tumor necrosis factor-alpha

Treg:

Regulatory T cell

VEGF:

Vascular endothelial growth factor

References

  1. Gaipl US, Multhoff G, Scheithauer H et al (2014) Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy. Immunotherapy 6:597–610

    Article  CAS  PubMed  Google Scholar 

  2. Demaria S, Pilones KA, Vanpouille-Box C et al (2014) The optimal partnership of radiation and immunotherapy: from preclinical studies to clinical translation. Radiat Res 182:170–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Demaria S, Golden EB, Formenti SC (2015) Role of local radiation therapy in cancer immunotherapy. JAMA. Oncol. doi:10.1001/jamaoncol.2015.2756

    Google Scholar 

  4. Frey B, Rubner Y, Kulzer L et al (2014) Antitumor immune responses induced by ionizing irradiation and further immune stimulation. Cancer Immunol Immunother 63:29–36

    Article  CAS  PubMed  Google Scholar 

  5. Zegers CM, Rekers NH, Quaden DH et al (2015) Radiotherapy combined with the immunocytokine L19-IL2 provides long-lasting antitumor effects. Clin Cancer Res 21:1151–1560

    Article  CAS  PubMed  Google Scholar 

  6. Lauber K, Brix N, Ernst A et al (2015) Targeting the heat shock response in combination with radiotherapy: sensitizing cancer cells to irradiation-induced cell death and heating up their immunogenicity. Cancer Lett 368:209–229

    Article  CAS  PubMed  Google Scholar 

  7. Ma Y, Conforti R, Aymeric L et al (2011) How to improve the immunogenicity of chemotherapy and radiotherapy. Cancer Metastasis Rev 30:71–82

    Article  CAS  PubMed  Google Scholar 

  8. Formenti SC, Demaria S (2013) Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst 105:256–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Georgakilas AG (2015) Role of the immune system and inflammation in ionizing radiation effects. Cancer Lett 368:154–156

    Article  CAS  PubMed  Google Scholar 

  10. Candeias S, Testard I (2015) The many interactions between the innate immune system and the response to radiation. Cancer Lett 356:173–178

    Article  Google Scholar 

  11. Hellweg CE (2015) The Nuclear Factor κB pathway: a link to the immune system in the radiation response. Cancer Lett 368:275–289

    Article  CAS  PubMed  Google Scholar 

  12. Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    Article  CAS  PubMed  Google Scholar 

  13. Schaue D, Ratikan JA, Iwamoto KS et al (2012) Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys 83:1306–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Multhoff G, Pockley AG, Schmid TE et al (2015) The role of heat shock protein 70 (Hsp70) in radiation-induced immunomodulation. Cancer Lett 368:179–184

    Article  CAS  PubMed  Google Scholar 

  15. Twyman-Saint Victor C, Rech AJ, Maity A et al (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520:373–377

    Article  CAS  PubMed  Google Scholar 

  16. Le QT, Shirato H, Giaccia AJ et al (2015) Emerging treatment paradigms in radiation oncology. Clin Cancer Res 21:3393–3401

    Article  PubMed  Google Scholar 

  17. Persa E, Balogh A, Safrany G et al (2015) The effect of ionizing radiation on regulatory T cells in health and disease. Cancer Lett 368:252–261

    Article  CAS  PubMed  Google Scholar 

  18. Hekim N, Cetin Z, Nikitaki Z et al (2015) Radiation triggering immune response and inflammation. Cancer Lett 368:156–163

    Article  CAS  PubMed  Google Scholar 

  19. Antonioli L, Hasko G, Fornai M et al (2014) Adenosine pathway and cancer: where do we go from here? Expert Opin Ther Targets 18:973–977

    Article  CAS  PubMed  Google Scholar 

  20. Park HJ, Griffin RJ, Hui S et al (2012) Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res 177:311–327

    Article  CAS  PubMed  Google Scholar 

  21. Antonioli L, Blandizzi C, Pacher P et al (2013) Immunity, inflammation and cancer: a leading role for adenosine. Nature Rev Cancer 13:842–857

    Article  CAS  Google Scholar 

  22. Sitkovsky MV, Kjaergaard J, Lukashev D et al (2008) Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin Cancer Res 14:5947–5952

    Article  CAS  PubMed  Google Scholar 

  23. Young A, Mittal D, Stagg J et al (2014) Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov 4:879–888

    Article  CAS  PubMed  Google Scholar 

  24. Spychala J (2000) Tumor-promoting functions of adenosine. Pharmacol Ther 87:161–173

    Article  CAS  PubMed  Google Scholar 

  25. Hoskin DW, Reynolds T, Blay J (1994) Adenosine as a possible inhibitor of killer T-cell activation in the microenvironment of solid tumours. Int J Cancer 59:854–855

    Article  CAS  PubMed  Google Scholar 

  26. Vaupel P, Mayer A (2016) Hypoxia-driven adenosine accumulation: a crucial microenvironmental factor promoting tumor progression. Adv Exp Med Biol 876:177–183

  27. Busse M, Vaupel P (1996) Accumulation of purine catabolites in solid tumors exposed to therapeutic hyperthermia. Experientia 52:469–473

    Article  CAS  PubMed  Google Scholar 

  28. Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57:2602–2605

    CAS  PubMed  Google Scholar 

  29. Hatfield SM, Kjaergaard J, Lukashev D et al (2014) Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1alpha-dependent and extracellular adenosine-mediated tumor protection. J Mol Med 92:1283–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vaupel P, Mayer A (2015) Can respiratory hyperoxia mitigate adenosine-driven suppression of antitumor immunity? Ann Transl Med 3:292. doi:10.3978/j.ssn2305-5839.2015.09.23

    PubMed  PubMed Central  Google Scholar 

  31. Becker JC, Andersen MH, Schrama D et al (2013) Immune-suppressive properties of the tumor microenvironment. Cancer Immmunol Immunother 62:1137–1148

    Article  CAS  Google Scholar 

  32. Gessi S, Merighi S, Sacchetto V et al (2011) Adenosine receptors and cancer. Biochim Biophys Acta 1808:1400–1412

    Article  CAS  PubMed  Google Scholar 

  33. Di Virgilio F (2012) Purines, purinergic receptors, and cancer. Cancer Res 72:5441–5447

    Article  CAS  PubMed  Google Scholar 

  34. Muller-Haegele S, Muller L, Whiteside TL (2014) Immunoregulatory activity of adenosine and its role in human cancer progression. Expert Rev Clin Immunol 10:897–914

    Article  CAS  PubMed  Google Scholar 

  35. Fishman P, Bar-Yehuda S, Synowitz M et al (2009) Adenosine receptors and cancer. Handb Exp Pharmacol 193:399–441

    Article  CAS  PubMed  Google Scholar 

  36. Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920

    Article  CAS  PubMed  Google Scholar 

  37. Hatfield SM, Kjaergaard J, Lukashev D et al (2015) Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med 7:277ra30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vaupel P (1977) Hypoxia in neoplastic tissue. Microvasc Res 13:399–408

    Article  CAS  PubMed  Google Scholar 

  39. Bayer C, Shi K, Astner ST et al (2011) Acute versus chronic hypoxia: why a simplified classification is simply not enough. Int J Radiat Oncol Biol Phys 80:965–968

    Article  PubMed  Google Scholar 

  40. Vaupel P, Mayer A (2014) Hypoxia in tumors: pathogenesis-related classification, characterization of hypoxia subtypes, and associated biological and clinical implications. Adv Exp Med Biol 812:19–24

    Article  CAS  PubMed  Google Scholar 

  41. Thews O, Vaupel P (2015) Spatial oxygenation profiles in tumors during normo- and hyperbaric hyperoxia. Strahlenther Onkol 191:875–882. doi:10.1070/s00066-015-0867-6

    Article  PubMed  Google Scholar 

  42. Stagg J, Smyth MJ (2010) Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29:5346–5358

    Article  CAS  PubMed  Google Scholar 

  43. Vaupel P (1974) Atemgaswechsel und Glucosestoffwechsel von Implantationsturmoren (DS-Carcinosarkom) in vivo. Funktionsanalyse biologischer Systeme. Steiner, Wiesbaden

    Google Scholar 

  44. Mayer A, Vaupel P (2013) Hypoxia, lactate accumulation, and acidosis: siblings or accomplices driving tumor progression and resistance to therapy? Adv Exp Med Biol 789:203–209

    Article  CAS  PubMed  Google Scholar 

  45. Lardner A (2001) The effects of extracellular pH on immune function. J Leukoc Biol 69:522–530

    CAS  PubMed  Google Scholar 

  46. Gottfried E, Kreutz M, Mackensen A (2012) Tumor metabolism as modulator of immune response and tumor progression. Semin Cancer Biol 22:335–341

    Article  CAS  PubMed  Google Scholar 

  47. Choi SY, Collins CC, Gout PW et al (2013) Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol 230:350–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mendler AN, Hu B, Prinz PU et al (2012) Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. Int J Cancer 131:633–640

    Article  CAS  PubMed  Google Scholar 

  49. Adams JL, Smothers J, Srinivasan R et al (2015) Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov 14:603–622

    Article  CAS  PubMed  Google Scholar 

  50. Häusler SF, Del Barrio IM, Diessner J et al (2014) Anti-CD39 and anti-CD73 antibodies A1 and 7G2 improve targeted therapy in ovarian cancer by blocking adenosine-dependent immune evasion. Am J Transl Res 6:129–139

    PubMed  PubMed Central  Google Scholar 

  51. Iannone R, Miele L, Maiolino P et al (2014) Adenosine limits the therapeutic effectiveness of anti-CTLA4 mAb in a mouse melanoma model. Am J Cancer Res 4:172–181

    PubMed  PubMed Central  Google Scholar 

  52. Allard B, Pommey S, Smyth MJ et al (2013) Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res 19:5626–5635

    Article  CAS  PubMed  Google Scholar 

  53. Ohta A, Sitkovsky M (2014) Extracellular adenosine-mediated modulation of regulatory T cells. Front Immunol 5:304

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schalper KA, Carvajal-Hausdorf D, Oyarzo MP (2014) Possible role of hemichannels in cancer. Front Physiology 5:237

    Google Scholar 

  55. Vaupel P, Muller-Klieser W, Otte J et al (1984) Impact of various thermal doses on the oxygenation and blood flow in malignant tumors upon localized hyperthermia. Adv Exp Med Biol 169:621–629

    Article  CAS  PubMed  Google Scholar 

  56. Lee CT, Mace T, Repasky EA (2010) Hypoxia-driven immunosuppression: a new reason to use thermal therapy in the treatment of cancer? Int J Hypethermia 26:232–246

    Article  Google Scholar 

  57. Ban HS, Uto Y, Nakamura l (2011) Hypoxia-inducible factor inhibitors: a survey of recent patented compounds (2004-2010). Expert Opin Ther Pat 21:131–146

  58. Sitkovsky M, Ohta A (2013) Targeting the hypoxia-adenosinergic signaling pathway to improve the adoptive immunotherapy of cancer. J Mol Med 93:147–155

Download references

Acknowledgments

The authors would like to thank Anett Lange for her valuable help during preparation of this article.

This work was supported by EU-CELLEUROPE (315963); BMBF (Strahlenkompetenz, 02NUK038A; Innovative Therapies, 01GU0823; NSCLC, 16GW0030 and the DFG Cluster of Excellence: Munich Centre for Advanced Photonics). The research leading to these results has received funding from the Deutsche Forschungsgemeinschaft (DFG) under Grant Agreement No. SFB 824/2; INST 95/980-1 FUGG; INST 411/37-1 FUGG irradiation devices and the Helmholtz Zentrum München (HMGU), CCG—Innate Immunity in Tumor Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vaupel M.A..

Ethics declarations

Conflict of interest

P. Vaupel and G. Multhoff state that there are no conflicts of interest.

The manuscript does not include studies on humans or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaupel, P., Multhoff, G. Adenosine can thwart antitumor immune responses elicited by radiotherapy. Strahlenther Onkol 192, 279–287 (2016). https://doi.org/10.1007/s00066-016-0948-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-016-0948-1

Keywords

Schlüsselwörter

Navigation