Skip to main content

Advertisement

Log in

Efficacy of Dural Sinus Quantitative Measurements in Idiopathic Intracranial Hypertension

A Practical Diagnostic Feature

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Background and Purpose

This study aimed to investigate the potential contribution of quantitative measurements of dural venous sinuses to the diagnosis of idiopathic intracranial hypertension (IIH) and the relationship between IIH and dural venous sinus dimensions on 3D post-gadolinium T1-weighted magnetic resonance (MR) images.

Material and Methods

A total of 129 individuals (57 IIH patients and 72 controls) who complained of headache and underwent both magnetic resonance venography (MRV) and precontrast/postcontrast 3D T1-weighted MR imaging between 2018 and 2021 were included in this retrospective study. Dural venous sinus and jugular vein diameters were measured in all cases using post-gadolinium 3D T1 TFE images. The presence of transverse sinus (TS) hypoplasia and occipital sinus variation, the number and size of arachnoid granulations in the TS, and the presence of brain parenchymal herniation were also evaluated. Cut-off values that maximized accurate diagnosis of IIH were established on the receiver operating characteristic curve. The sensitivity and specificity of the diagnosis of IIH based on quantitative measurements of the dural sinus were calculated.

Results

The ratios of the maximum to minimum TS diameters and the minimum TS diameters to minimum sigmoid sinus (SS) diameters were significantly higher in IIH patients than in the control group (p < 0.001). The diagnostic sensitivity and specificity values of TSmax/TSmin and TSmin sum/SSmin sum parameters for the detection of IIH were 84.2%, 84.7% and 83.3%, 84.2%, respectively.

Conclusion

Practical measurements from multiplanar T1 sequences can be useful for both quantitative assessment and overcoming misinterpretation due to anatomical variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AG:

Arachnoid granulation

AUC:

Area under the curve

CSF:

Cerebrospinal fluid

FOV:

Field of view

ICC:

Intraclass correlation coefficient

ICP:

Intracranial pressure

IIH:

Idiopathic intracranial hypertension

IJV:

Internal jugular vein

MRI:

Magnetic resonance imaging

MRV:

Magnetic resonance venography

ROC:

Receiver operating characteristic

SS:

Sigmoid sinus

SSS:

Superior sagittal sinus

TS:

Transverse sinus

References

  1. Friedman DI, Liu GT, Digre KB. Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children. Neurology. 2013;81:1159–65.

    Article  PubMed  Google Scholar 

  2. Wall M. Update on Idiopathic Intracranial Hypertension. Neurol Clin. 2017;35:45–57.

    Article  PubMed  PubMed Central  Google Scholar 

  3. McCluskey G, Doherty-Allan R, McCarron P, Loftus AM, McCarron LV, Mulholland D, McVerry F, McCarron MO. Meta-analysis and systematic review of population-based epidemiological studies in idiopathic intracranial hypertension. Eur J Neurol. 2018;25:1218–27.

    Article  CAS  PubMed  Google Scholar 

  4. Durcan FJ, Corbett JJ, Wall M. The incidence of pseudotumor cerebri: population studies in Iowa and Louisiana. Arch Neurol. 1988;45:875–7.

    Article  CAS  PubMed  Google Scholar 

  5. Degnan AJ, Levy LM. Pseudotumor cerebri: brief review of clinical syndrome and imaging findings. AJNR Am J Neuroradiol. 2011;32:1986–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baheti NN, Nair M, Thomas SV. Long-term visual outcome in idiopathic intracranial hypertension. Ann Indian Acad Neurol. 2011;14:19–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marashdeh WM, Al Qaralleh MA, Hdeeb AH. Quantitative parameters for diagnosis of idiopathic intracranial hypertension on brain MRI. Eur J Radiol Open. 2021;8:100371.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bidot S, Saindane AM, Peragallo JH, Bruce BB, Newman NJ, Biousse V. Brain imaging in idiopathic intracranial hypertension. J Neuroophthalmol. 2015;35(4):400–11.

    PubMed  Google Scholar 

  9. Farb RI, Vanek I, Scott JN, Mikulis DJ, Willinsky RA, Tomlinson G, terBrugge KG. Idiopathic intracranial hypertension: the prevalence and morphology of sinovenous stenosis. Neurology. 2003;60:1418–24.

    Article  CAS  PubMed  Google Scholar 

  10. Morris PP, Black DF, Port J, Campeau N. Transverse Sinus Stenosis Is the Most Sensitive MR Imaging Correlate of Idiopathic Intracranial Hypertension. AJNR Am J Neuroradiol. 2017;38:471–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carvalho GB, Matas SL, Idagawa MH, Tibana LA, de Carvalho RS, Silva ML, Cogo-Moreira H, Jackowski AP, Abdala N. A new index for the assessment of transverse sinus stenosis for diagnosing idiopathic intracranial hypertension. J Neurointerv Surg. 2017;9:173–7.

    Article  PubMed  Google Scholar 

  12. Bekerman I, Sigal T, Kimiagar I, Almer ZE, Vaiman M. Diagnostic value of the optic nerve sheath diameter in pseudotumor cerebri. J Clin Neurosci. 2016;30:106–9.

    Article  PubMed  Google Scholar 

  13. Kamali A, Sullivan KC, Rahmani F, Gandhi A, Aein A, Arevalo O, Rabiei P, Choi SJ, Zhang X, Gabr RE, Riascos RF. Indentation and transverse diameter of the Meckel Cave: imaging markers to diagnose idiopathic intracranial hypertension. AJNR Am J Neuroradiol. 2020;41:1487–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morris PP, Lachman N, Black DF, Carter RA, Port J, Campeau N. Increased curvature of the tentorium cerebelli in idiopathic intracranial hypertension. AJNR Am J Neuroradiol. 2017;38:1789–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Durst CR, Ornan DA, Reardon MA, Mehndiratta P, Mukherjee S, Starke RM, Wintermark M, Evans A, Jensen ME, Crowley RW, Gaughen J, Liu KC. Prevalence of dural venous sinus stenosis and hypoplasia in a generalized population. J Neurointerv Surg. 2016;8:1173–7.

    Article  PubMed  Google Scholar 

  16. Field A. Discovering statistics using IBM SPSS statistics. 5th ed. SAGE; 2018.

    Google Scholar 

  17. Kwee RM, Kwee TC. Systematic review and meta-analysis of MRI signs for diagnosis of idiopathic intracranial hypertension. Eur J Radiol. 2019;116:106–15.

    Article  PubMed  Google Scholar 

  18. Barkatullah AF, Leishangthem L, Moss HE. MRI findings as markers of idiopathic intracranial hypertension. Curr Opin Neurol. 2021;34:75–83.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kuzan BN, Ilgın C, Kuzan TY, Dericioğlu V, Kahraman-Koytak P, Uluç K, Çimşit NÇ. Accuracy and reliability of magnetic resonance imaging in the diagnosis of idiopathic intracranial hypertension. Eur J Radiol. 2022;155:110491.

    Article  PubMed  Google Scholar 

  20. Pickard JD, Czosnyka Z, Czosnyka M, Owler B, Higgins JN. Coupling of sagittal sinus pressure and cerebrospinal fluid pressure in idiopathic intracranial hypertension—a preliminary report. In: Steiger HJ, editor. Acta neurochirurgica supplements. Vienna: Springer; 2009. pp. 283–5.

    Google Scholar 

  21. Kalyvas A, Neromyliotis E, Koutsarnakis C, Komaitis S, Drosos E, Skandalakis GP, Pantazi M, Gobin YP, Stranjalis G, Patsalides A. A systematic review of surgical treatments of idiopathic intracranial hypertension (IIH). Neurosurg Rev. 2021;44:773–92.

    Article  PubMed  Google Scholar 

  22. Ayanzen RH, Bird CR, Keller PJ, McCully FJ, Theobald MR, Heiserman JE. Cerebral MR venography: normal anatomy and potential diagnostic pitfalls. AJNR Am J Neuroradiol. 2000;21:74–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lublinsky S, Friedman A, Kesler A, Zur D, Anconina R, Shelef I. Automated Cross-Sectional Measurement Method of Intracranial Dural Venous Sinuses. AJNR Am J Neuroradiol. 2016;37:468–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Strydom MA, Briers N, Bosman MC, Steyn S. The anatomical basis of venographic filling defects of the transverse sinus. Clin Anat. 2010;23:153–9.

    CAS  PubMed  Google Scholar 

  25. Karahalios DG, Rekate HL, Khayata MH, Apostolides PJ. Elevated intracranial venous pressure as a universal mechanism in pseudotumor cerebri of varying etiologies. Neurology. 1996;46:198–202.

    Article  CAS  PubMed  Google Scholar 

  26. Malekzadehlashkariani S, Wanke I, Rüfenacht DA, San Millán D. Brain herniations into arachnoid granulations: about 68 cases in 38 patients and review of the literature. Neuroradiology. 2016;58:443–57.

    Article  PubMed  Google Scholar 

  27. Waser B, Wood HM, Mews P, Lalloo S. Transverse sinus stenting for treatment of papilloedema secondary to a large brain herniation into a dural venous sinus with associated tectal plate lesion: Case report and literature review. Interv Neuroradiol. 2021;27:756–62.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lenck S, Radovanovic I, Nicholson P, Hodaie M, Krings T, Mendes-Pereira V. Idiopathic intracranial hypertension. Neurology. 2018;91:515–22.

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bora Korkmazer.

Ethics declarations

Conflict of interest

B. Korkmazer, A.K. Karaman, E.K. Kızılkılıç, R. Unkun, S. Arslan, U. Uygunoğlu, O. Kızılkılıç, N. Koçer and C. Islak declare that they have no competing interests.

Ethical standards

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Consent to participate: Informed consent was obtained from all individual participants included in the study. Consent for publication: Patients signed informed consent regarding publishing their data.

Additional information

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korkmazer, B., Karaman, A.K., Kızılkılıç, E.K. et al. Efficacy of Dural Sinus Quantitative Measurements in Idiopathic Intracranial Hypertension. Clin Neuroradiol 33, 545–554 (2023). https://doi.org/10.1007/s00062-022-01244-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-022-01244-0

Keywords

Navigation