Skip to main content
Log in

Pulmonary hypertension in HFpEF and HFrEF: Pathophysiology, diagnosis, treatment approaches

Pulmonale Hypertonie bei HFpEF und HFrEF: Pathophysiologie, Diagnose, Behandlungsansätze

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Pulmonary hypertension (PH) is a frequent hemodynamic condition that is highly prevalent in patients with heart failure and reduced (HFrEF) or preserved ejection fraction (HFpEF). Irrespective of left ventricular EF, the presence of PH and right ventricular (RV) dysfunction are highly relevant for morbidity and mortality in patients with heart failure. While elevated left-sided filling pressures and functional mitral regurgitation primarily lead to post-capillary PH, current guidelines and recommendations distinguish between isolated post-capillary PH (IpcPH) and combined post- and pre-capillary PH (CpcPH), the latter being defined by a pulmonary vascular resistance (PVR) of ≥3 Wood units. Here, we describe the pathophysiology and clinical relevance of these distinct entities, and report on the diagnostic work-up including remote pulmonary artery pressure (PAP) monitoring. Furthermore, we highlight strategies to manage PH and improve RV function in heart failure, which may include optimized management of HFrEF and HFpEF (medical and interventional), sufficient volume control, catheter-based mitral valve repair, and—in selected cases—targeted PH therapy. In this context, we also highlight gaps in evidence and the need for further research.

Zusammenfassung

Pulmonale Hypertonie (PH) ist ein häufiger hämodynamischer Zustand, der sowohl bei Patienten mit Herzinsuffizienz und reduzierter (HFrEF) als auch erhaltener Ejektionsfraktion (HFpEF) prävalent ist. Unabhängig von der linksventrikulären EF sind das Auftreten einer PH und einer rechtsventrikulären (RV-)Dysfunktion für die Morbidität und Mortalität von Patienten mit Herzinsuffizienz hoch relevant. Obgleich erhöhte linksseitige Füllungsdrucke sowie eine funktionelle Mitralklappeninsuffizienz primär zu einer postkapillären PH führen, differenzieren aktuelle Leitlinien und Empfehlungen zwischen isoliert postkapillärer PH (IpcPH) und kombiniert post- und präkapillärer PH (CpcPH). Letztere wird durch einen auf ≥. Wood-Einheiten erhöhten pulmonalvaskulären Widerstand (PVR) definiert. In diesem Artikel werden die Pathophysiologie und klinische Relevanz dieser unterschiedlichen Entitäten sowie die diagnostische Differenzierung inklusive eines Telemonitorings des pulmonalarteriellen Drucks (PAP) beschrieben. Des Weiteren werden Strategien zur Behandlung der PH und Verbesserung der RV-Funktion bei Herzinsuffizienz aufgezeigt, welche ein optimiertes Management von HFrEF und HFpEF (medikamentös und interventionell), eine suffiziente Volumenkontrolle, die kathetergestützte Behandlung einer Mitralklappeninsuffizienz, und – in ausgewählten Fällen – eine gezielte PH-Therapie beinhalten können. In diesem Zusammenhang weisen die Autoren auch auf Evidenzlücken und die Notwendigkeit weiterer Forschungsbemühungen hin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rosenkranz S, Gibbs JS, Wachter R et al (2016) Left ventricular heart failure and pulmonary hypertension. Eur Heart J 37:942–954

    Article  PubMed  Google Scholar 

  2. Miller WL, Grill DE, Borlaug BA (2013) Clinical features, hemodynamics, and outcomes of pulmonary hypertension due to chronic heart failure with reduced ejection fraction. JACC Heart Fail 1:290–299

    Article  PubMed  Google Scholar 

  3. Ghio S, Gavazzi A, Campana C et al (2001) Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol 37:183–188

    Article  CAS  PubMed  Google Scholar 

  4. Tampakakis E, Leary PJ, Selby VN et al (2015) The diastolic pulmonary gradient does not predict survival in patients with pulmonary hypertension due to left heart disease. JACC Heart Fail 3:9–16

    Article  PubMed  Google Scholar 

  5. Lam CS, Roger VL, Rodeheffer RJ et al (2009) Pulmonary hypertension in heart failure with preserved ejection fraction. A community-based study. J Am Coll Cardiol 53:1119–1126

    Article  PubMed  PubMed Central  Google Scholar 

  6. Leung CC, Moondra V, Catherwood E, Andrus BW (2010) Prevalence and risk factors of pulmonary hypertension in patients with elevated pulmonary venous pressure and preserved ejection fraction. Am J Cardiol 106:284–286

    Article  PubMed  Google Scholar 

  7. Shah AM, Shah SJ, Annand IS et al (2014) Cardiac structure and function in heart failure with preserved ejection fraction: Baseline findings from the echocardiographic study of the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial (TOPCAT). Circ Heart Fail 7:104–115

    Article  CAS  PubMed  Google Scholar 

  8. Hoeper MM, Humbert M, Souza R et al (2016) A global view of pulmonary hypertension. Lancet Respir Med 4:306–322

    Article  PubMed  Google Scholar 

  9. Fang JC, DeMarco T, Givertz MM et al (2012) World Health Organization Pulmonary Hypertension Group 2: Pulmonary hypertension due to left heart disease in the adult—A summary statement from the Pulmonary Hypertension Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 31:913–933

    Article  PubMed  Google Scholar 

  10. Rosenkranz S, Lang IM, Blind R et al (2018) Pulmonary hypertension associated with left heart disease: Updated recommendations of the Cologne Consensus Conference. Int J Cardiol 2018(272):53–62

    Article  Google Scholar 

  11. Vachiéry JL, Tedford RJ, Rosenkranz S et al (2019) Pulmonary hypertension due to left heart disease. Eur Respir J. https://doi.org/10.1183/13993003.01897-2018

    Article  PubMed  PubMed Central  Google Scholar 

  12. Galiè N, McLaughlin VV, Rubin LJ, Simonneau G (2018) An overview of the 6th World Symposium on Pulmonary Hypertension. Eur Respir J 1802148. https://doi.org/10.1183/13993003.02148-2018

    Article  Google Scholar 

  13. Simonneau G, Montani D, Celermajer DS et al (2019) Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 53:1801913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guazzi M, Naeije R (2017) Pulmonary hypertension in heart failure: Pathophysiology, pathobiology, and emerging clinical perspectives. J Am Coll Cardiol 69:1718–1734

    Article  PubMed  Google Scholar 

  15. Fayyaz AU, Edwards WD, Maleszewski JJ et al (2018) Global pulmonary vascular remodeling in pulmonary hypertension associated with heart failure and preserved or reduced ejection fraction. Circulation 137:1796–1810

    Article  PubMed  Google Scholar 

  16. Galiè N, Humbert M, Vachiery JL et al (2015) ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 2016(37):67–119

    Google Scholar 

  17. Assad TR, Hemnes AR, Larkin EK et al (2016) Clinical and biological insights into combined post- and pre-capillary pulmonary hypertension. J Am Coll Cardiol 68:2525–2536

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bursi F, McNallan SM, Redfield MM et al (2012) Pulmonary pressures and death in heart failure: A community study. J Am Coll Cardiol 59:222–231

    Article  PubMed  PubMed Central  Google Scholar 

  19. Melenovsky V, Hwang SJ, Lin G et al (2014) Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J 35:3452–3462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mohammed SF, Hussain I, Abou Ezzeddine OF et al (2014) Right ventricular function in heart failure with preserved ejection fraction: A community-based study. Circulation 130:2310–2320

    Article  PubMed  PubMed Central  Google Scholar 

  21. Obokata M, Reddy YNV, Melenovsky V et al (2019) Deterioration in right ventricular structure and function over time in patients with heart failure and preserved ejection fraction. Eur Heart J 40:689–697

    Article  PubMed  Google Scholar 

  22. Maron BA, Hess E, Maddox TM et al (2016) Association of borderline pulmonary hypertension with mortality and hospitalization in a large patient cohort: Insights from the Veterans Affairs clinical assessment, reporting, and tracking program. Circulation 133:1240–1248

    Article  PubMed  PubMed Central  Google Scholar 

  23. Assad TR, Maron BA, Robbins IM et al (2017) Prognostic effect and longitudinal hemodynamic assessment of borderline pulmonary hypertension. JAMA Cardiol 2:1361–1368

    Article  PubMed  PubMed Central  Google Scholar 

  24. Douschan P, Kovacs G, Avian A et al (2018) Mild elevation of pulmonary arterial pressure as a predictor of mortality. Am J Respir Crit Care Med 197:509–516

    Article  PubMed  Google Scholar 

  25. Vanderpool RR, Saul M, Nouraie M et al (2018) Association between hemodynamic markers of pulmonary hypertension and outcomes in patients with heart failure and preserved ejection fraction. JAMA Cardiol 3:298–306

    Article  PubMed  PubMed Central  Google Scholar 

  26. Caravita S, Dewachter C, Soranna D et al (2018) Haemodynamics to predict outcome in pulmonary hypertension due to left heart disease: A meta-analysis. Eur Respir J. https://doi.org/10.1183/13993003.02427-2017

    Article  PubMed  Google Scholar 

  27. Palazzini M, Dardi F, Manes A et al (2018) Pulmonary hypertension due to left-heart disease: Analysis of survival according to the haemodynamic classification of the 2015 ESC/ERS guidelines and new insights for future changes. Eur J Heart Fail 20:248–255

    Article  PubMed  Google Scholar 

  28. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 18:891–975

    Article  Google Scholar 

  29. Ouwekerk W, Voors AA, Anker SD et al (2017) Determinants and clinical outcome of uptitration of ACE-inhibitors and beta-blockers in patients with heart failure: A prospective European study. Eur Heart J 38:1883–1890

    Article  CAS  Google Scholar 

  30. Hoeper MM, Lam CSP, Vachiéry JL et al (2017) Pulmonary hypertension in heart failure with preserved ejection fraction: A plea for proper phenotyping and further research. Eur Heart J 38:2869–2873

    PubMed  Google Scholar 

  31. Mohammed SF, Mirzoyev SA, Edwards WD et al (2014) Left ventricular amyloid deposition in patients with heart failure and preserved ejection fraction. JACC Heart Fail 2:113–122

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bursi F, Barbieri A, Grigioni F et al (2010) Prognostic implications of functional mitral regurgitation according to the severity of the underlying chronic heart failure: A long-term outcome study. Eur J Heart Fail 12:382–388

    Article  PubMed  Google Scholar 

  33. Kusunose K, Popović ZB, Motoki H, Marwick TH (2013) Prognostic significance of exercise-induced right ventricular dysfunction in asymptomatic degenerative mitral regurgitation. Circ Cardiovasc Imaging 6:167–176

    Article  PubMed  Google Scholar 

  34. Lancellotti P, Magne J, Dulgheru R et al (2015) Clinical significance of exercise pulmonary hypertension in secondary mitral regurgitation. Am J Cardiol 115:1454–1461

    Article  PubMed  Google Scholar 

  35. Gaemperli O, Moccetti M, Surder D et al (2012) Acute haemodynamic changes after percutaneous mitral valve repair: Relation to mid-term outcomes. Heart 98:126–132

    Article  PubMed  Google Scholar 

  36. Tigges E, Blankenberg S, von Bardeleben S et al (2018) Implication of pulmonary hypertension in patients undergoing MitraClip therapy: Results from the German transcatheter mitral valve interventions (TRAMI) registry. Eur J Heart Fail 20:585–594

    Article  PubMed  Google Scholar 

  37. Bermejo J, Yotti R, García-Orta R et al (2018) Sildenafil for improving outcomes in patients with corrected valvular heart disease and persistent pulmonary hypertension: A multicenter, double-blind, randomized clinical trial. Eur Heart J 39:1255–1264

    Article  CAS  PubMed  Google Scholar 

  38. Kang DH, Park SJ, Shin SH et al (2019) Angiotensin receptor neprilysin inhibitor for functional mitral regurgitation. Circulation 139:1354–1365

    Article  CAS  PubMed  Google Scholar 

  39. Patel ND, Weiss ES, Schaffer J et al (2008) Right heart dysfunction after left ventricular assist device implantation: A comparison of the pulsatile HeartMate I and axial-flow HeartMate II devices. Ann Thorac Surg 86:832–840

    Article  PubMed  Google Scholar 

  40. Torre-Amione G, Southard RE, Loebe MM et al (2010) Reversal of secondary pulmonary hypertension by axial and pulsatile mechanical circulatory support. J Heart Lung Transplant 29:195–200

    Article  PubMed  Google Scholar 

  41. Zimpfer D, Zrunek P, Roethy W et al (2007) Left ventricular assist devices decrease fixed pulmonary hypertension in cardiac transplant candidates. J Thorac Cardiovasc Surg 133:689–695

    Article  PubMed  Google Scholar 

  42. Al-Kindi SG, Farhoud M, Zacharias M et al (2017) Left ventricular assist devices or inotropes for decreasing pulmonary vascular resistance in patients with pulmonary hypertension listed for heart transplantation. J Card Fail 23:209–215

    Article  PubMed  Google Scholar 

  43. Imamura F, Chung B, Nguyen A et al (2017) Decoupling between diastolic pulmonary artery pressure and pulmonary capillary wedge pressure as a prognostic factor after continuous flow ventricular assist device implantation. Circ Heart Fail 10:e3882

    Article  PubMed  PubMed Central  Google Scholar 

  44. Abraham WT, Perl L (2017) Implantable hemodynamic monitoring for heart failure patients. J Am Coll Cardiol 70:389–398

    Article  PubMed  Google Scholar 

  45. Abraham WT, Adamson PB, Bourge RC et al (2011) Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: A randomised controlled trial. Lancet 377:658–666

    Article  PubMed  Google Scholar 

  46. Adamson PB, Abraham WT, Bourge RC et al (2014) Wireless pulmonary artery pressure monitoring guides management to reduce decompensation in heart failure with preserved ejection fraction. Circ Heart Fail 7:935–944

    Article  PubMed  Google Scholar 

  47. Abraham WT, Stevenson LW, Bourge RC et al (2016) Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial. Lancet 387:453–461

    Article  PubMed  Google Scholar 

  48. Desai AS, Bhimaraj A, Bharmi R et al (2017) Ambulatory hemodynamic monitoring reduces heart failure hospitalizations in “real-world” clinical practice. J Am Coll Cardiol 69:2357–2365

    Article  PubMed  Google Scholar 

  49. Zile MR, Bennett TD, El Hajj S et al (2017) Intracardiac pressures measured using an implantable hemodynamic monitor: Relationship to mortality in patients with chronic heart failure. Circ Heart Fail. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003594

    Article  PubMed  Google Scholar 

  50. Shavelle D et al. Pulmonary artery pressure-guided therapy for ambulatory heart failure patients in clinical practice: 1‑year outcomes from the CardioMEMS post-approval study. J Am Coll Cardiol 2019 (Abstract presentation at ACC 2019).

  51. Guazzi M, Samaja M, Arena R et al (2007) Long-term use of sildenafil in the therapeutic management of heart failure. J Am Coll Cardiol 50:2136–2144

    Article  CAS  PubMed  Google Scholar 

  52. Dumitrescu D, Seck C, Möhle L et al (2012) Therapeutic potential of sildenafil in patients with heart failure and reactive pulmonary hypertension. Int J Cardiol 154:205–206

    Article  PubMed  Google Scholar 

  53. Guazzi M, Vicenzi M, Arena R, Guazzi MD (2011) Pulmonary hypertension in heart failure with preserved ejection fraction: A target of phosphodiesterase-5 inhibition in a 1-year study. Circulation 124:164–174

    Article  CAS  PubMed  Google Scholar 

  54. Kramer T, Dumitrescu D, Gerhardt F et al (2019) Therapeutic potential of phosphodiesterase type 5 inhibitors in heart failure with preserved ejection fraction and combined post- and pre-capillary pulmonary hypertension. Int J Cardiol 283:152–158

    Article  PubMed  Google Scholar 

  55. Packer M, McMurray JJV, Krum H et al (2017) Long-term effect of endothelin receptor antagonism with bosentan on the morbidity and mortality of patients with severe chronic heart failure: Primary results of the ENABLE trials. JACC Heart Fail 5:317–326

    Article  PubMed  Google Scholar 

  56. Vachiéry JL, Delcroix M, Al-Hiti H et al (2018) Macitentan in pulmonary hypertension due to left ventricular dysfunction. Eur Respir J. https://doi.org/10.1183/13993003.01886-2017

    Article  PubMed  Google Scholar 

  57. Opitz CF, Hoeper MM, Gibbs JS et al (2016) Pre-capillary, combined, and post-capillary pulmonary hypertension: A pathophysiological continuum. J Am Coll Cardiol 68:368–378

    Article  PubMed  Google Scholar 

  58. Borlaug BA, Obokata M (2017) Is it time to recognize a new phenotype? Heart failure with preserved ejection fraction with pulmonary vascular disease. Eur Heart J 38:2874–2878

    Article  PubMed  Google Scholar 

  59. Redfield MM, Chen HH, Borlaug BA et al (2013) Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: A randomized clinical trial. JAMA 309:1268–1277

    Article  CAS  PubMed  Google Scholar 

  60. Hoendermis ES, Liu LC, Hummel YM et al (2015) Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: A randomized controlled trial. Eur Heart J 36:2565–2573

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rosenkranz.

Ethics declarations

Conflict of interest

S. Rosenkranz: Remunerations for lectures and/or consultancy from Abbott, Actelion, Arena, Bayer, Ferrer, GSK, MSD, Novartis, Pfizer, and United Therapeutics. Research support to institution from Actelion, Bayer, Novartis, Pfizer, and United Therapeutics. T. Kramer: Remunerations for lectures from Actelion, Bayer, MSD. F. Gerhardt: Remunerations for lectures from Actelion, Bayer, GSK, MSD, and United Therapeutics; grants to institution from Actelion, Bayer, Novartis und United Therapeutics. C. Opitz: No personal fees as potential conflicts of interest. K.M. Olsson: Remunerations for lectures and/or consultancy from Actelion, Bayer, GSK, Pfizer und United Therapeutics. M.M. Hoeper: Honoraria for lectures and/or consulting from Actelion, Bayer, Gilead, GSK, Merck, and Pfizer.

For this article no studies with human participants or animals were performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenkranz, S., Kramer, T., Gerhardt, F. et al. Pulmonary hypertension in HFpEF and HFrEF: Pathophysiology, diagnosis, treatment approaches. Herz 44, 483–490 (2019). https://doi.org/10.1007/s00059-019-4831-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-019-4831-6

Keywords

Schlüsselwörter

Navigation