Skip to main content
Log in

Leadless pacing

Sondenlose Herzschrittmacher

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Leadless self-contained intracardiac pacemakers were developed with the aim of abolishing the short- and long-term risk of lead- and pocket-related complications associated with transvenous devices. Leadless pacemakers promise minimally invasive procedures, long battery lives, and small amounts of foreign materials in the body. Experiences with the pioneering single-chamber devices have provided reasons for optimism about the future of the leadless concept. In the future, as more patients receive and live longer with implantable devices, the total risk of procedure- and lead-related complications is expected to increase, adding a sense of urgency to the need for leadless alternatives to transvenous pacemakers. This review surveys the performance of currently available leadless pacemakers as well as emerging new innovative adaptations and applications of the leadless concept.

Zusammenfassung

Sondenfrei integrierte intrakardiale Schrittmacher wurden mit dem Ziel entwickelt, das kurz- und langfristige Risiko für durch Elektroden und chirurgisch bedingte Komplikationen im Zusammenhang mit konventionellen Systemen zu beseitigen. „Leadless pacer“ versprechen minimalinvasive Eingriffe und einen geringen Anteil an Fremdmaterial im Körper. Erfahrungen mit den wegweisenden Einkammergeräten haben Anlass zu Optimismus für die weitere klinische Anwendung des Leadless-Konzepts gegeben. Da in Zukunft mehr Patienten mit implantierbaren Geräten versorgt werden und länger leben, wird davon ausgegangen, dass das Gesamtrisiko von verfahrens- und sondenbedingten Komplikationen steigt, was die Notwendigkeit dringender Alternativen zu transvenösen Herzschrittmachern erhöht. In der vorliegenden Übersichtsarbeit werden die Erfahrungen mit den derzeitig verfügbaren sondenlosen Herzschrittmachern dargestellt, und es wird ein Überblick über neue, innovative klinische und therapeutische Optionen gegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mittal T (2005) Pacemakers—A journey through the years. Indian J Thorac Cardiovasc Surg 21:236–249. https://doi.org/10.1007/s12055-005-0060-0

    Article  Google Scholar 

  2. Kirkfeldt RE, Johansen JB, Nohr EA et al (2011) Risk factors for lead complications in cardiac pacing: a population-based cohort study of 28,860 Danish patients. Heart Rhythm 8:1622–1628. https://doi.org/10.1016/j.hrthm.2011.04.014

    Article  PubMed  Google Scholar 

  3. Udo EO, Zuithoff NPA, van Hemel NM et al (2012) Incidence and predictors of short- and long-term complications in pacemaker therapy: the FOLLOWPACE study. Heart Rhythm 9:728–735. https://doi.org/10.1016/j.hrthm.2011.12.014

    Article  PubMed  Google Scholar 

  4. Kirkfeldt RE, Johansen JB, Nohr EA et al (2014) Complications after cardiac implantable electronic device implantations: an analysis of a complete, nationwide cohort in Denmark. Eur Heart J 35:1186–1194. https://doi.org/10.1093/eurheartj/eht511

    Article  PubMed  Google Scholar 

  5. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200. https://doi.org/10.1093/eurheartj/ehw128

    Article  PubMed  Google Scholar 

  6. Ubrich R, Kreiser K, Sinnecker D, Schneider S (2016) Magnetic resonance imaging at 1.5-T in a patient with implantable leadless pacemaker. Eur Heart J 37:2441–2441. https://doi.org/10.1093/eurheartj/ehv360

    Article  PubMed  Google Scholar 

  7. Cay S, Ozeke O, Ozcan F et al (2016) An important advantage of the leadless pacemakers: magnetic resonance imaging compatibility. Europace 18(628):1–629. https://doi.org/10.1093/europace/euv246

    Article  Google Scholar 

  8. Reddy VY, Exner DV, Cantillon DJ et al (2015) Percutaneous implantation of an entirely intracardiac leadless pacemaker. N Engl J Med 373:1125–1135. https://doi.org/10.1056/NEJMoa1507192

    Article  CAS  PubMed  Google Scholar 

  9. Reddy VY, Knops RE, Sperzel J et al (2014) Permanent leadless cardiac pacing: results of the LEADLESS trial. Circulation 129:1466–1471. https://doi.org/10.1161/CIRCULATIONAHA.113.006987

    Article  PubMed  Google Scholar 

  10. Sperzel J, Defaye P, Delnoy P‑P et al (2018) Primary safety results from the LEADLESS Observational Study. Europace. https://doi.org/10.1093/europace/eux359

    Article  PubMed  Google Scholar 

  11. Reynolds D, Duray GZ, Omar R et al (2016) A leadless intracardiac transcatheter pacing system. N Engl J Med 374:533–541. https://doi.org/10.1056/NEJMoa1511643

    Article  CAS  PubMed  Google Scholar 

  12. Roberts PR, Clementy N, Al Samadi F et al (2017) A leadless pacemaker in the real-world setting: the micra transcatheter pacing system post-approval registry. Heart Rhythm 14:1375–1379. https://doi.org/10.1016/j.hrthm.2017.05.017

    Article  PubMed  Google Scholar 

  13. Tjong FVY, Reddy VY (2017) Permanent leadless cardiac pacemaker therapy: a comprehensive review. Circulation 135:1458–1470. https://doi.org/10.1161/CIRCULATIONAHA.116.025037

    Article  PubMed  Google Scholar 

  14. Wilkoff BL, Bello D, Taborsky M et al (2011) Magnetic resonance imaging in patients with a pacemaker system designed for the magnetic resonance environment. Heart Rhythm 8:65–73. https://doi.org/10.1016/j.hrthm.2010.10.002

    Article  PubMed  Google Scholar 

  15. Knops RE, Brouwer TF, Barr CS et al (2016) The learning curve associated with the introduction of the subcutaneous implantable defibrillator. Europace 18:1010–1015. https://doi.org/10.1093/europace/euv299

    Article  PubMed  Google Scholar 

  16. Minha S, Waksman R, Satler LP et al (2016) Learning curves for transfemoral transcatheter aortic valve replacement in the PARTNER-I trial: success and safety. Catheter Cardiovasc Interv 87:165–175. https://doi.org/10.1002/ccd.26121

    Article  PubMed  Google Scholar 

  17. El-Chami M, Kowal RC, Soejima K et al (2017) Impact of operator experience and training strategy on procedural outcomes with leadless pacing: Insights from the Micra Transcatheter Pacing Study. Pacing Clin Electrophysiol 40:834–842. https://doi.org/10.1111/pace.13094

    Article  PubMed  Google Scholar 

  18. Duray GZ, Ritter P, El-Chami M et al (2017) Long-term performance of a transcatheter pacing system: 12-Month results from the Micra Transcatheter Pacing Study. Heart Rhythm 14:702–709. https://doi.org/10.1016/j.hrthm.2017.01.035

    Article  PubMed  Google Scholar 

  19. Tjong FVY, Knops RE, Udo EO et al (2018) Leadless pacemaker versus transvenous single-chamber pacemaker therapy: a propensity score-matched analysis. Heart Rhythm. https://doi.org/10.1016/j.hrthm.2018.04.027

    Article  PubMed  Google Scholar 

  20. Lakkireddy D, Knops R, Atwater B et al (2017) A worldwide experience of the management of battery failures and chronic device retrieval of the Nanostim leadless pacemaker. Heart Rhythm 14:1756–1763. https://doi.org/10.1016/j.hrthm.2017.07.004

    Article  PubMed  Google Scholar 

  21. Richter S, Döring M, Ebert M et al (2018) Battery malfunction of a leadless cardiac pacemaker—a worrisome single-center experience. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.117.033371

    Article  PubMed  Google Scholar 

  22. Beurskens NEG, Tjong FVY, Quast A‑FBE, Knops RE (2018) Successful replacement of the longest worldwide in situ nanostim leadless cardiac pacemaker for a micra transcatheter pacing system. J Interv Card Electrophysiol 51:161–162. https://doi.org/10.1007/s10840-017-0310-2

    Article  PubMed  PubMed Central  Google Scholar 

  23. Grubman E, Ritter P, Ellis CR et al (2017) To retrieve, or not to retrieve: system revisions with the micra transcatheter pacemaker. Heart Rhythm 14:1801–1806. https://doi.org/10.1016/j.hrthm.2017.07.015

    Article  PubMed  Google Scholar 

  24. Omdahl P, Eggen MD, Bonner MD et al (2016) Right ventricular anatomy can accommodate multiple micra transcatheter pacemakers. Pacing Clin Electrophysiol 39:393–397. https://doi.org/10.1111/pace.12804

    Article  PubMed  PubMed Central  Google Scholar 

  25. Crotti N (2018) Abbott is developing a dual-chamber leadless pacemaker. Med Des Outsourcing. https://www.medicaldesignandoutsourcing.com/abbott-is-developing-a-dual-chamber-leadless-pacer/. Accessed 2 Aug 2018

  26. Bereuter L, Gysin M, Kueffer T et al (2018) 38Leadless cardiac dual-chamber pacing. Ep Eur 20:i1–i1. https://doi.org/10.1093/europace/euy015

    Article  Google Scholar 

  27. Mihalcz A, Kassai I, Geller L, Szili-Török T (2014) Alternative techniques for left ventricular pacing in cardiac resynchronization therapy. Pacing Clin Electrophysiol 37:255–261. https://doi.org/10.1111/pace.12320

    Article  PubMed  Google Scholar 

  28. Reddy VY, Miller MA, Neuzil P et al (2017) Cardiac resynchronization therapy with wireless left ventricular endocardial pacing: the SELECT-LV study. J Am Coll Cardiol 69:2119–2129. https://doi.org/10.1016/j.jacc.2017.02.059

    Article  PubMed  Google Scholar 

  29. Auricchio A, Delnoy P‑P, Butter C et al (2014) Feasibility, safety, and short-term outcome of leadless ultrasound-based endocardial left ventricular resynchronization in heart failure patients: results of the wireless stimulation endocardially for CRT (WiSE-CRT) study. Europace 16:681–688. https://doi.org/10.1093/europace/eut435

    Article  PubMed  Google Scholar 

  30. van Rees JB, de Bie MK, Thijssen J et al (2011) Implantation-related complications of implantable cardioverter-defibrillators and cardiac resynchronization therapy devices: a systematic review of randomized clinical trials. J Am Coll Cardiol 58:995–1000. https://doi.org/10.1016/j.jacc.2011.06.007

    Article  PubMed  Google Scholar 

  31. Maisel WH, Kramer DB (2008) Implantable cardioverter-defibrillator lead performance. Circulation 117:2721–2723. https://doi.org/10.1161/CIRCULATIONAHA.108.776807

    Article  PubMed  Google Scholar 

  32. Bardy GH, Smith WM, Hood MA et al (2010) An entirely subcutaneous implantable cardioverter-defibrillator. N Engl J Med 363:36–44. https://doi.org/10.1056/NEJMoa0909545

    Article  CAS  PubMed  Google Scholar 

  33. Burke MC, Gold MR, Knight BP et al (2015) Safety and efficacy of the totally subcutaneous implantable defibrillator: 2‑year results from a pooled analysis of the IDE study and EFFORTLESS registry. J Am Coll Cardiol 65:1605–1615. https://doi.org/10.1016/j.jacc.2015.02.047

    Article  PubMed  Google Scholar 

  34. Boersma L, Barr C, Knops R et al (2017) Implant and midterm outcomes of the subcutaneous implantable cardioverter-defibrillator registry: the EFFORTLESS study. J Am Coll Cardiol 70:830–841. https://doi.org/10.1016/j.jacc.2017.06.040

    Article  PubMed  Google Scholar 

  35. Priori SG, Blomström-Lundqvist C, Mazzanti A et al (2015) 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J 36:2793–2867. https://doi.org/10.1093/eurheartj/ehv316

    Article  PubMed  Google Scholar 

  36. Al-Khatib SM, Stevenson WG, Ackerman MJ et al (2017) 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation. https://doi.org/10.1161/CIR.0000000000000549

    Article  PubMed  PubMed Central  Google Scholar 

  37. Markewitz A (2011) Annual report 2009 of the German cardiac pacemaker registry: federal section pacemaker and AQUA – institute for applied quality improvement and research in health Ltd. Herzschrittmacherther Elektrophysiol 22:259–280. https://doi.org/10.1007/s00399-011-0149-7

    Article  CAS  PubMed  Google Scholar 

  38. Quast A‑FBE, Tjong FVY, Koop BE et al (2018) Device orientation of a leadless pacemaker and subcutaneous implantable cardioverter-defibrillator in canine and human subjects and the effect on intrabody communication. Europace. https://doi.org/10.1093/europace/euy019

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sperzel.

Ethics declarations

Conflict of interest

J. Sperzel, C. Hamm, and A. Hain declare that they have no competing interests.

The authors did not conduct any studies with human or animal participants for this article. As for other studies cited here, information on ethical guidelines may be found in the respective sources.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sperzel, J., Hamm, C. & Hain, A. Leadless pacing. Herz 43, 605–611 (2018). https://doi.org/10.1007/s00059-018-4752-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-018-4752-9

Keywords

Schlüsselwörter

Navigation