Skip to main content
Log in

Efficacy of liraglutide intervention in myocardial infarction

A meta-analysis of randomized controlled trials

Wirksamkeit einer Liraglutidintervention bei Myokardinfarkt

Eine Metaanalyse randomisierter, kontrollierter Studien

  • Review articles
  • Published:
Herz Aims and scope Submit manuscript

An Erratum to this article was published on 29 January 2019

This article has been updated

Abstract

Introduction

The efficacy of liraglutide intervention for myocardial infarction (MI) remains controversial. We conducted a systematic review and meta-analysis to explore the influence of liraglutide intervention versus placebo on cardiac function for MI.

Methods

We searched PubMed, Embase, Web of science, EBSCO, and Cochrane library databases through April 2018 for randomized controlled trials (RCTs) assessing the effect of liraglutide intervention versus placebo on MI. This meta-analysis was performed using the random-effect model.

Results

Four randomized controlled trials involving 469 patients were included in the meta-analysis. Overall, compared with control group for MI, liraglutide intervention significantly improved left ventricular ejection fraction (mean difference [MD] = 4.42; 95% confidence interval [CI] =1.71 to 7.14; P = 0.001), superoxide dismutase (MD = 6.89; 95% CI = 1.80 to 11.98; P = 0.008), and decreased high-sensitivity C‑reactive protein (MD = −0.21; 95% CI = −0.33 to −0.09; P = 0.0006), but had no remarkable influence on major adverse cardiovascular events (risk ratio = 0.56; 95% CI = 0.28–1.09; P = 0.09), recurrence of MI (risk ratio = 0.50; 95% CI = 0.19–1.30; P = 0.16), repeated revascularization (risk ratio = 0.49; 95% CI = 0.17–1.42; P = 0.19), and cardiac death (risk ratio = 0.57; 95% CI = 0.12–2.73; P = 0.48).

Conclusions

Liraglutide intervention is associated with significantly improved left ventricular ejection fraction and superoxide dismutase, reduced high-sensitivity C‑reactive protein in patients with MI, but has no remarkable impact on major adverse cardiovascular events, recurrence of MI, repeated revascularization or cardiac death.

Zusammenfassung

Einleitung

Die Wirksamkeit einer Liraglutidintervention bei Myokardinfarkt (MI) bleibt umstritten. In der vorliegenden systematischen Übersichtsarbeit mit Metaanalyse wurde der Einfluss einer Liraglutidintervention auf die Herzfunktion bei MI im Vergleich zu Placebo untersucht.

Methoden

PubMed, Embase, Web of Science, EBSCO und die Cochrane Library wurden bis April 2018 nach randomisierten, kontrollierten Studien (RCT) zur Wirkung einer Liraglutidintervention bei MI vs. Placebo durchsucht. Für die Metaanalyse wurde das Random-effects-Modell herangezogen.

Ergebnisse

Vier randomisierte, kontrollierte Studien mit 469 Patienten wurden in die Metaanalyse eingeschlossen. Im Vergleich zur Kontrollgruppe verbesserte die Liraglutidintervention bei MI insgesamt signifikant die linksventrikuläre Ejektionsfraktion (Mittelwertdifferenz [MD] = 4,42; 95 %-Konfidenzintervall [KI] = 1,71 bis 7,14; P = 0,001) und die Superoxiddismutase (MD = 6,89; 95 %-KI = 1,80 bis 11,98; P = 0,008). Zudem senkte sie das hochsensitive C‑reaktive Protein (MD = −0,21; 95 %-KI = −0,33 bis −0,09; P = 0,0006), hatte aber keinen wesentlichen Einfluss auf schwere unerwünschte kardiovaskuläre Ereignisse (relatives Risiko = 0,56; 95 %-KI = 0,28 bis 1,09; P = 0,09), MI-Rezidive (relatives Risiko = 0,50; 95 %-KI = 0,19 bis 1,30; P = 0,16), eine wiederholte Revaskularisierung (relatives Risiko = 0,49; 95 %-KI = 0,17 bis 1,42; P = 0,19) und Herztod (relatives Risiko = 0,57; 95 %-KI = 0,12 bis 2,73; P = 0,48).

Schlussfolgerungen

Die Liraglutidintervention ist mit einer signifikant verbesserten linksventrikulären Ejektionsfraktion und Superoxiddismutase sowie mit einem gesenkten hochsensitiven C‑reaktiven Protein bei Patienten mit MI assoziiert, hat aber keinen wesentlichen Effekt auf schwere unerwünschte kardiovaskuläre Ereignisse, MI-Rezidive, eine wiederholte Revaskularisierung und Herztod.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 29 January 2019

    <Emphasis Type="Bold">Erratum to:</Emphasis>

    <Emphasis Type="Bold">Herz 2018</Emphasis>

    <ExternalRef><RefSource>https://doi.org/10.1007/s00059-018-4748-5</RefSource><RefTarget Address="10.1007/s00059-018-4748-5" TargetType="DOI"/></ExternalRef>

    In the above mentioned article, the affiliations of the authors and the corresponding address were not given correctly. The correct affiliations/address of correspondence is as follows:

    X. Yang<Superscript>1,2</Superscript>, Z. Liang<Superscript>1</Superscript>

    1 Department of Respiratory …

References

  1. Keeley EC, Boura JA, Grines CL (2003) Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet 361:13–20

    Article  Google Scholar 

  2. Yang HT, Xiu WJ, Zheng YY, Liu F, Gao Y, Ma X et al (2018) Invasive reperfusion after 12 h of the symptom onset remains beneficial in patients with ST-segment elevation myocardial infarction: evidence from a meta-analysis of published data. Cardiol J. https://doi.org/10.5603/CJ.a2018.0034

    Article  PubMed  Google Scholar 

  3. Russo JJ, Bagai A, Le May MR, Yan AT (2018) Immediate non-culprit vessel percutaneous coronary intervention (PCI) in patients with acute myocardial infarction and cardiogenic shock: a swinging pendulum. J Thorac Dis 10:661–666

    Article  Google Scholar 

  4. Guo L, Zhong L, Chen K, Wu J, Huang RC (2018) Long-term clinical outcomes of optimal medical therapy vs. successful percutaneous coronary intervention for patients with coronary chronic total occlusions. Hellenic J Cardiol. https://doi.org/10.1016/j.hjc.2018.03.005

    Article  PubMed  Google Scholar 

  5. Echouffo-Tcheugui JB, Kolte D, Khera S, Aronow HD, Abbott JD, Bhatt DL et al (2018) Diabetes mellitus and cardiogenic shock complicating acute myocardial infarction. Am J Med. https://doi.org/10.1016/j.amjmed.2018.03.004

    Article  PubMed  Google Scholar 

  6. Ottani F, Limbruno U, Latini R, Misuraca L, Galvani M (2018) Reperfusion in STEMI patients: still a role for cardioprotection? Minerva Cardioangiol 66(4):452–463. https://doi.org/10.23736/S0026-4725.18.04680-7

    Article  PubMed  Google Scholar 

  7. Cao B, Zhang C, Wang H, Xia M, Yang X (2018) Renoprotective effect of remote ischemic postconditioning in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Ther Clin Risk Manag 14:369–375

    Article  CAS  Google Scholar 

  8. Gersh BJ, Stone GW, White HD, Holmes DR Jr. (2005) Pharmacological facilitation of primary percutaneous coronary intervention for acute myocardial infarction: is the slope of the curve the shape of the future? JAMA 293:979–986

    Article  CAS  Google Scholar 

  9. Ceriello A, Novials A, Ortega E, Canivell S, La Sala L, Pujadas G et al (2013) Glucagon-like peptide 1 reduces endothelial dysfunction, inflammation, and oxidative stress induced by both hyperglycemia and hypoglycemia in type 1 diabetes. Diabetes Care 36:2346–2350

    Article  CAS  Google Scholar 

  10. Noyan-Ashraf MH, Momen MA, Ban K, Sadi AM, Zhou YQ, Riazi AM et al (2009) GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 58:975–983

    Article  CAS  Google Scholar 

  11. Chen WR, Hu SY, Chen YD, Zhang Y, Qian G, Wang J et al (2015) Effects of liraglutide on left ventricular function in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am Heart J 170:845–854

    Article  CAS  Google Scholar 

  12. Chen WR, Chen YD, Tian F, Yang N, Cheng LQ, Hu SY et al (2016) Effects of Liraglutide on reperfusion injury in patients with ST-segment-elevation myocardial infarction. Circ Cardiovasc Imaging 9:e5146

    Article  Google Scholar 

  13. Chen WR, Tian F, Chen YD, Wang J, Yang JJ, Wang ZF et al (2016) Effects of liraglutide on no-reflow in patients with acute ST-segment elevation myocardial infarction. Int J Cardiol 208:109–114

    Article  Google Scholar 

  14. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62:1006–1012

    Article  Google Scholar 

  15. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJM, Gavaghan DJ et al (1996) Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control Clin Trials 17:1–12

    Article  CAS  Google Scholar 

  16. Kjaergard LL, Villumsen J, Gluud C (2001) Reported methodologic quality and discrepancies between large and small randomized trials in meta-analyses. Ann Intern Med 135:982–989

    Article  CAS  Google Scholar 

  17. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558

    Article  Google Scholar 

  18. Chen WR, Shen XQ, Zhang Y, Chen YD, Hu SY, Qian G et al (2016) Effects of liraglutide on left ventricular function in patients with non-ST-segment elevation myocardial infarction. Endocrine 52:516–526

    Article  CAS  Google Scholar 

  19. Undas A, Wiek I, Stepien E, Zmudka K, Tracz W (2008) Hyperglycemia is associated with enhanced thrombin formation, platelet activation, and fibrin clot resistance to lysis in patients with acute coronary syndrome. Diabetes Care 31:1590–1595

    Article  CAS  Google Scholar 

  20. Kosiborod M (2018) Hyperglycemia in acute coronary syndromes: from mechanisms to prognostic implications. Endocrinol Metab Clin North Am 47:185–202

    Article  Google Scholar 

  21. Lee TF, Burt MG, Heilbronn LK, Mangoni AA, Wong VW, McLean M et al (2017) Relative hyperglycemia is associated with complications following an acute myocardial infarction: a post-hoc analysis of HI-5 data. Cardiovasc Diabetol 16:157

    Article  Google Scholar 

  22. Park JY, Takahara N, Gabriele A, Chou E, Naruse K, Suzuma K et al (2000) Induction of endothelin-1 expression by glucose: an effect of protein kinase C activation. Diabetes 49:1239–1248

    Article  CAS  Google Scholar 

  23. Marenzi G, Cosentino N, Milazzo V, De Metrio M, Cecere M, Mosca S et al (2018) Prognostic value of the acute-to-chronic glycemic ratio at admission in acute myocardial infarction: a prospective study. Diabetes Care 41:847–853

    Article  CAS  Google Scholar 

  24. Muller O, Trana C, Eeckhout E (2013) Myocardial no-reflow treatment. Curr Vasc Pharmacol 11:278–285

    CAS  PubMed  Google Scholar 

  25. Zhao T, Parikh P, Bhashyam S, Bolukoglu H, Poornima I, Shen YT et al (2006) Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther 317:1106–1113

    Article  CAS  Google Scholar 

  26. Bekkers SC, Yazdani SK, Virmani R, Waltenberger J (2010) Microvascular obstruction: underlying pathophysiology and clinical diagnosis. J Am Coll Cardiol 55:1649–1660

    Article  Google Scholar 

  27. Jaffe R, Charron T, Puley G, Dick A, Strauss BH (2008) Microvascular obstruction and the no-reflow phenomenon after percutaneous coronary intervention. Circulation 117:3152–3156

    Article  Google Scholar 

  28. Timmers L, Henriques JP, de Kleijn DP, Devries JH, Kemperman H, Steendijk P et al (2009) Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 53:501–510

    Article  CAS  Google Scholar 

  29. Lonborg J, Vejlstrup N, Kelbaek H, Botker HE, Kim WY, Mathiasen AB et al (2012) Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J 33:1491–1499

    Article  CAS  Google Scholar 

  30. Dokken BB, La Bonte LR, Davis-Gorman G, Teachey MK, Seaver N, McDonagh PF (2011) Glucagon-like peptide-1 (GLP-1), immediately prior to reperfusion, decreases neutrophil activation and reduces myocardial infarct size in rodents. Horm Metab Res 43:300–305

    Article  CAS  Google Scholar 

  31. Wang JW, Chen YD, Wang CH, Yang XC, Zhu XL, Zhou ZQ (2013) Development and validation of a clinical risk score predicting the no-reflow phenomenon in patients treated with primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Cardiology 124:153–160

    Article  Google Scholar 

  32. Monami M, Dicembrini I, Nardini C, Fiordelli I, Mannucci E (2014) Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 16:38–47

    Article  CAS  Google Scholar 

  33. Hirshberg B, Katz A (2015) Insights from cardiovascular outcome trials with novel antidiabetes agents: what have we learned? An industry perspective. Curr Diab Rep 15:87

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Liang.

Ethics declarations

Conflict of interest

X. Yang and Z. Liang declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Liang, Z. Efficacy of liraglutide intervention in myocardial infarction. Herz 45, 461–467 (2020). https://doi.org/10.1007/s00059-018-4748-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-018-4748-5

Keywords

Schlüsselwörter

Navigation