Skip to main content
Log in

Precision medicine for cardiovascular disease

Learning lessons from cardiomyopathies

Präzisionsmedizin bei Herz-Kreislauf-Erkrankungen

Lehrreiche Erfahrungen durch Kardiomyopathien

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Evidence-based medicine has considerably advanced the treatment of highly prevalent cardiovascular diseases. Its implementation was driven by multicenter interventional trials in treatment and placebo cohorts, propelling numerous biomedical innovations toward standard of care. While a uniform treatment can be effective in such disease cohorts (“one size fits all”), it neglects the genetic and phenotypic individuality of a single patient and his or her disease. Accordingly, a recent observation was made that several newer “mega” trials, demanding considerable resources for their execution, showed statistically significant differences in outcome, however, with small overall efficacies that render implementation in the clinics unlikely. To overcome this concerning development, new methods for individualized treatment of cardiovascular disease are required. Rarer conditions, such as distinct cardiomyopathies, may deliver the blueprint for a paradigm shift: deep and precise phenotyping of individual patients by a multimodal approach and development of targeted treatments for smaller groups (“one treatment for many”) or even for single patients (“one treatment of some”).

Zusammenfassung

Durch die evidenzbasierte Medizin kam es zu beträchtlichen Fortschritten in der Behandlung von Herz-Kreislauf-Erkrankungen mit hoher Prävalenz. Ihre Etablierung wurde durch multizentrische Interventionsstudien mit Therapie- und Placebokohorten gefördert, was dazu führte, dass zahlreiche biomedizinische Neuerungen in die Standardversorgung Aufnahme fanden. Während die gleiche Behandlung für alle in solchermaßen erkrankten Kohorten wirksam sein kann („Einheitsgröße“), werden die genetischen und phänotpyischen individuellen Merkmale des einzelnen Patienten und seiner Krankheit dabei vernachlässigt. Entsprechend wurde kürzlich beobachtet, dass einige neuere „Megastudien“, die beträchtliche Ressourcen für ihre Durchführung binden, statistisch signifikante Unterschiede im Ergebnis aufwiesen, jedoch mit geringer Gesamtwirksamkeit, welche die Etablierung im klinischen Alltag unwahrscheinlich macht. Um diese beunruhigende Entwicklung zu überwinden, sind neue Methoden für die individualisierte Behandlung von Herz-Kreislauf-Erkrankungen erforderlich. Seltenere Erkrankungen, wie bestimmte Kardiomyopathien, bieten möglicherweise eine Vorlage für einen Paradigmenwechsel: tiefe und präzise Phänotypisierung einzelner Patienten in einem multimodalen Ansatz und Entwicklung gezielter Therapie für kleinere Gruppen („eine Therapie für viele“) oder sogar für einzelne Patienten („eine Therapie für einige“).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Scandinavian Simvastatin Survival Study Group (1994) Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344(8934):1383–1389

  2. Böhm M et al (2007) Positionspapier zur Statintherapie. Clin Res Cardiol Suppl 2(1):8–15

    Article  Google Scholar 

  3. Chandra A, Garthwaite C, Stern AD (2017) Characterizing the drug development pipeline for precision medicines, in economic dimensions of personalized and precision medicine. University of Chicago Press, Chicago

    Book  Google Scholar 

  4. Raghow RA (2016) “Omics” perspective on cardiomyopathies and heart failure. Trends Mol Med 22(9):813–827

    Article  PubMed  Google Scholar 

  5. Rosmini S et al (2017) Relationship between aetiology and left ventricular systolic dysfunction in hypertrophic cardiomyopathy. Heart 103(4):300–306

    Article  PubMed  Google Scholar 

  6. Rombach SM et al (2014) Natural course of Fabry disease and the effectiveness of enzyme replacement therapy: a systematic review and meta-analysis: effectiveness of ERT in different disease stages. J Inherit Metab Dis 37(3):341–352

    Article  CAS  PubMed  Google Scholar 

  7. Hughes DA et al (2017) Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J Med Genet 54(4):288–296

    Article  PubMed  Google Scholar 

  8. Connelly S et al (2010) Structure-based design of kinetic stabilizers that ameliorate the transthyretin amyloidoses. Curr Opin Struct Biol 20(1):54–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sultan MB et al (2017) Treatment with tafamidis slows disease progression in early-stage transthyretin cardiomyopathy. Clin Med Insights Cardiol 11:1179546817730322

    Article  PubMed  PubMed Central  Google Scholar 

  10. Maron BJ, Maron MS, Semsarian C (2012) Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol 60(8):705–715

    Article  PubMed  Google Scholar 

  11. Sedaghat-Hamedani F et al (2017) Clinical outcomes associated with sarcomere mutations in hypertrophic cardiomyopathy: a meta-analysis on 7675 individuals. Clin Res Cardiol. https://doi.org/10.1007/s00392-017-1155-5

    Google Scholar 

  12. Elliott PM et al (2014) ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy. Kardiol Pol 72(11):1054–1126

    Article  PubMed  Google Scholar 

  13. Schulze-Bahr E et al (2015) Gendiagnostik bei kardiovaskulären ErkrankungenMolecular diagnostics of cardiovascular diseases. Kardiologe 9(3):213–243

    Article  CAS  Google Scholar 

  14. Ho CY et al (2015) Diltiazem treatment for pre-clinical hypertrophic cardiomyopathy sarcomere mutation carriers: a pilot randomized trial to modify disease expression. Jacc Heart Fail 3(2):180–188

    Article  PubMed  Google Scholar 

  15. Kayvanpour E, Katus HA, Meder B (2015) Determined to fail—the role of genetic mechanisms in heart failure. Curr Heart Fail Rep 12(5):333–338

    Article  CAS  PubMed  Google Scholar 

  16. Haas J et al (2015) Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J 36(18):1123–135a

    Article  CAS  PubMed  Google Scholar 

  17. Hastings R et al (2016) Combination of whole genome sequencing, linkage, and functional studies implicates a missense mutation in titin as a cause of autosomal dominant cardiomyopathy with features of left ventricular noncompaction. Circ Cardiovasc Genet 9(5):426–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sedaghat-Hamedani F et al (2017) Clinical genetics and outcome of left ventricular non-compaction cardiomyopathy. Eur Heart J. https://doi.org/10.1093/eurheartj/ehx545

    PubMed  Google Scholar 

  19. Herman DS et al (2012) Truncations of titin causing dilated cardiomyopathy. N Engl J Med 366(7):619–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hinze F et al (2016) Reducing RBM20 activity improves diastolic dysfunction and cardiac atrophy. J Mol Med 94(12):1349–1358

  21. Kumar S et al (2016) Long-term arrhythmic and nonarrhythmic outcomes of lamin A/C mutation carriers. J Am Coll Cardiol 68(21):2299–2307

    Article  CAS  PubMed  Google Scholar 

  22. Muchir A, Wu W, Worman HJ (2010) Mitogen-activated protein kinase inhibitor regulation of heart function and fibrosis in cardiomyopathy caused by lamin A/C gene mutation. Trends Cardiovasc Med 20(7):217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Muchir A et al (2012) Abnormal p38alpha mitogen-activated protein kinase signaling in dilated cardiomyopathy caused by lamin A/C gene mutation. Hum Mol Genet 21(19):4325–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. MacRae C et al (2016) Phase 2 study of A797, an oral, selective p38 mitogen-activated protein kinase inhibitor, in patients with lamin A/C-related dilated cardiomyopathy. Eur Heart J 37(1011):P4981

    Google Scholar 

  25. Mearini G et al (2014) Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice. Nat Commun 5:5515

    Article  CAS  PubMed  Google Scholar 

  26. Prondzynski M et al (2017) Evaluation of MYBPC3 trans-splicing and gene replacement as therapeutic options in human iPSC-derived cardiomyocytes. Mol Ther Nucleic Acids 7:475–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weinberger F et al (2016) Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Sci Transl Med 8(363):363ra148

    Article  PubMed  Google Scholar 

  28. Liu J, Harper SQ (2012) RNAi-based gene therapy for dominant limb girdle muscular dystrophies. Curr Gene Ther 12(4):307–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McNally EM, Wyatt EJ (2017) Mutation-based therapy for Duchenne muscular dystrophy: antisense treatment arrives in the clinic. Circulation 136(11):979–981

    Article  PubMed  Google Scholar 

  30. Karakikes I et al (2015) Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy. Nat Commun 6:6955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma H et al (2017) Correction of a pathogenic gene mutation in human embryos. Nature 548(7668):413–419

    Article  CAS  PubMed  Google Scholar 

  32. Kayvanpour E et al (2017) Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals. Clin Res Cardiol 106(2):127–139

    Article  CAS  PubMed  Google Scholar 

  33. Haas J et al (2017) Genomic structural variations lead to dysregulation of important coding and non-coding RNA species in dilated cardiomyopathy. Embo Mol Med. https://doi.org/10.15252/emmm.201707838

    PubMed  Google Scholar 

  34. Chen Y et al (2015) Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice. Cardiovasc Diabetol 14:99

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hang CT et al (2010) Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466(7302):62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Greco CM et al (2016) DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy. Nat Commun 7:12418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Movassagh M et al (2011) Distinct epigenomic features in end-stage failing human hearts. Circulation 124(22):2411–2422

    Article  PubMed  PubMed Central  Google Scholar 

  38. Haas J et al (2013) Alterations in cardiac DNA methylation in human dilated cardiomyopathy. Embo Mol Med 5(3):413–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Meder B et al (2017) Epigenome-wide association study identifies cardiac gene patterning and a novel class of biomarkers for heart failure. Circulation 136(16):1528–1544

    Article  CAS  PubMed  Google Scholar 

  40. Mayer SC et al (2015) Adrenergic repression of the epigenetic reader meCP2 facilitates cardiac adaptation in chronic heart failure. Circ Res 117(7):622–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiao D et al (2014) Inhibition of DNA methylation reverses norepinephrine-induced cardiac hypertrophy in rats. Cardiovasc Res 101(3):373–382

    Article  CAS  PubMed  Google Scholar 

  42. Kumarswamy R et al (2014) Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res 114(10):1569–1575

    Article  CAS  PubMed  Google Scholar 

  43. Schiano C et al (2017) Heart failure: pilot transcriptomic analysis of cardiac tissue by RNA-sequencing. Cardiol J. https://doi.org/10.5603/CJ.a2017.0052

    PubMed  Google Scholar 

  44. Chaitra KL et al (2013) miRNA regulation during cardiac development and remodeling in cardiomyopathy. Excli J 12:980–992

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469(7330):336–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wahlquist C et al (2014) Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 508(7497):531–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gurha P et al (2012) Targeted deletion of microRNA-22 promotes stress-induced cardiac dilation and contractile dysfunction. Circulation 125(22):2751–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thum T et al (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456(7224):980–984

    Article  CAS  PubMed  Google Scholar 

  49. Vogel B et al (2013) Multivariate miRNA signatures as biomarkers for non-ischaemic systolic heart failure. Eur Heart J 34(36):2812–2822

    Article  CAS  PubMed  Google Scholar 

  50. de Franciscis S, Metzinger L, Serra R (2016) The discovery of novel genomic, transcriptomic, and proteomic biomarkers in cardiovascular and peripheral vascular disease: the state of the art. Biomed Res Int. https://doi.org/10.1155/2016/7829174

    Google Scholar 

  51. Rohde D et al (2011) S100A1 gene therapy for heart failure: a novel strategy on the verge of clinical trials. J Mol Cell Cardiol 50(5):777–784

    Article  CAS  PubMed  Google Scholar 

  52. Alvarez P, Tang WW (2017) Recent advances in understanding and managing cardiomyopathy. F1000Res 6:1659

    Article  PubMed  PubMed Central  Google Scholar 

  53. Halliday BP et al (2017) Personalizing risk stratification for sudden death in dilated cardiomyopathy: the past, present, and future. Circulation 136(2):215–231

    Article  PubMed  Google Scholar 

  54. Kober L et al (2016) Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med 375(13):1221–1230

    Article  PubMed  Google Scholar 

  55. Aro AL, Kentta TV, Huikuri HV (2016) Microvolt T‑wave alternans: where are we now? Arrhythm Electrophysiol Rev 5(1):37–40

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sedaghat-Hamedani F et al (2015) Biomarker changes after strenuous exercise can mimic pulmonary embolism and cardiac injury—a metaanalysis of 45 studies. Clin Chem 61(10):1246–1255

    Article  CAS  PubMed  Google Scholar 

  57. Amr A et al (2016) Personalized computer simulation of diastolic function in heart failure. Genomics Proteomics Bioinformatics 14(4):244–252

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kayvanpour E et al (2015) Towards personalized cardiology: multi-scale modeling of the failing heart. PLoS ONE 10(7):e134869

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gulati A et al (2013) Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 309(9):896–908

    Article  CAS  PubMed  Google Scholar 

  60. Halliday BP et al (2017) Association between midwall late gadolinium enhancement and sudden cardiac death in patients with dilated cardiomyopathy and mild and moderate left ventricular systolic dysfunction. Circulation 135(22):2106–2115

    Article  PubMed  PubMed Central  Google Scholar 

  61. van Rijsingen IA et al (2012) Risk factors for malignant ventricular arrhythmias in lamin a/c mutation carriers a European cohort study. J Am Coll Cardiol 59(5):493–500

    Article  PubMed  Google Scholar 

  62. Authors/Task Force, Elliott PM et al (2014) 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 35(39):2733–2779

    Article  Google Scholar 

  63. Liebregts M et al (2017) Validation of the HCM Risk-SCD model in patients with hypertrophic cardiomyopathy following alcohol septal ablation. Europace. https://doi.org/10.1093/europace/eux251

    PubMed  Google Scholar 

  64. Schork NJ (2015) Personalized medicine: time for one-person trials. Nature 520(7549):609–611

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work is supported by grants from the DZHK (“Deutsches Zentrum für Herz-Kreislauf-Forschung”, German Centre for Cardiovascular Research), the German Ministry of Education and Research (caRNAtion, Promise), and the European Union (FP7 BestAgeing, ERA-CVD DETECTIN-HF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Meder.

Ethics declarations

Conflict of interest

F. Sedaghat-Hamedani, H. A. Katus, and B. Meder declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedaghat-Hamedani, F., Katus, H.A. & Meder, B. Precision medicine for cardiovascular disease. Herz 43, 123–130 (2018). https://doi.org/10.1007/s00059-017-4667-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-017-4667-x

Keywords

Schlüsselwörter

Navigation