Skip to main content

Precision Medicine in Cardiovascular Disease Practice

  • Chapter
  • First Online:
Precision Medicine in Clinical Practice

Abstract

Cardiovascular diseases (CVDs) as the leading cause of death and morbidity worldwide, have a substantial genetic basis. The personalized medicine (PM) concept tailors therapeutic and preventive strategies according to the genomic, epigenomic, and proteomic profiles of each individual. In the field of cardiology, PM can help cardiologists and health care providers to prevent adverse drug reactions (ADR) and select the best-individualized medication. In addition, a considerable number of cardiomyopathies, arrhythmias, and coronary artery disease (CAD) risk factors have also a genetic basis. In this chapter, we thoroughly reviewed the genetic background in the metabolism of important cardiovascular drugs such as warfarin, clopidogrel, and statins. Moreover, the cardinal role of genetic pathways in the occurrence of cardiomyopathies, arrhythmia, and CAD will be discussed. Finally, the ethical issues and prospective of PM were also reviewed to lighten all aspects of PM in cardiovascular medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogenberg FR, Isaacson Barash C, Pursel M. Personalized medicine: part 1: evolution and development into theranostics. P T. 2010;35(10):560–76.

    PubMed  PubMed Central  Google Scholar 

  2. Leopold JA, Loscalzo J. Emerging role of precision medicine in cardiovascular disease. Circ Res. 2018;122(9):1302–15. https://doi.org/10.1161/circresaha.117.310782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459–544. https://doi.org/10.1016/s0140-6736(16)31012-1.

    Article  Google Scholar 

  4. Goetz LH, Schork NJ. Personalized medicine: motivation, challenges, and progress. Fertil Steril. 2018;109(6):952–63. https://doi.org/10.1016/j.fertnstert.2018.05.006.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wadelius M, Pirmohamed M. Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenomics J. 2007;7(2):99–111. https://doi.org/10.1038/sj.tpj.6500417.

    Article  CAS  PubMed  Google Scholar 

  6. Mozaffarian D, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322. https://doi.org/10.1161/cir.0000000000000152.

    Article  PubMed  Google Scholar 

  7. Currie G, Delles C. Precision medicine and personalized medicine in cardiovascular disease. Adv Exp Med Biol. 2018;1065:589–605. https://doi.org/10.1007/978-3-319-77932-4_36.

    Article  PubMed  Google Scholar 

  8. Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med. 2010;363(4):301–4. https://doi.org/10.1056/NEJMp1006304.

    Article  CAS  PubMed  Google Scholar 

  9. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease?*. Int J Epidemiol. 2003;32(1):1–22. https://doi.org/10.1093/ije/dyg070.

    Article  Google Scholar 

  10. Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318(19):1925–6. https://doi.org/10.1001/jama.2017.17219.

    Article  PubMed  Google Scholar 

  11. Cohen JC, et al. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72. https://doi.org/10.1056/NEJMoa054013.

    Article  CAS  PubMed  Google Scholar 

  12. Stitziel NO, et al. Inactivating mutations in NPC1L1 and protection from coronary heart disease. N Engl J Med. 2014;371(22):2072–82. https://doi.org/10.1056/NEJMoa1405386.

    Article  CAS  PubMed  Google Scholar 

  13. Peloso GM, et al. Rare protein-truncating variants in APOB, lower low-density lipoprotein cholesterol, and protection against coronary heart disease. Circ Genom Precis Med. 2019;12(5):e002376. https://doi.org/10.1161/circgen.118.002376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ansell J, et al. Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008;133(6 Suppl):160s–98s. https://doi.org/10.1378/chest.08-0670.

    Article  CAS  PubMed  Google Scholar 

  15. Kasner SE, et al. Warfarin dosing algorithms and the need for human intervention. Am J Med. 2016;129(4):431–7. https://doi.org/10.1016/j.amjmed.2015.11.012.

    Article  CAS  PubMed  Google Scholar 

  16. Ma Z, et al. Clinical model for predicting warfarin sensitivity. Sci Rep. 2019;9(1):12856. https://doi.org/10.1038/s41598-019-49329-0.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Danese E, et al. Impact of the CYP4F2 p.V433M polymorphism on coumarin dose requirement: systematic review and meta-analysis. Clin Pharmacol Ther. 2012;92(6):746–56. https://doi.org/10.1038/clpt.2012.184.

    Article  CAS  PubMed  Google Scholar 

  18. Caldwell MD, et al. CYP4F2 genetic variant alters required warfarin dose. Blood. 2008;111(8):4106–12. https://doi.org/10.1182/blood-2007-11-122010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aithal GP, et al. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet. 1999;353(9154):717–9. https://doi.org/10.1016/s0140-6736(98)04474-2.

    Article  CAS  PubMed  Google Scholar 

  20. Mega JL, et al. Genetics and the clinical response to warfarin and edoxaban: findings from the randomised, double-blind ENGAGE AF-TIMI 48 trial. Lancet. 2015;385(9984):2280–7. https://doi.org/10.1016/s0140-6736(14)61994-2.

    Article  CAS  PubMed  Google Scholar 

  21. Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics. 2002;12(3):251–63. https://doi.org/10.1097/00008571-200204000-00010.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang X-L, et al. Clinical pharmacokinetics and pharmacodynamics of clopidogrel. Clin Pharmacokinet. 2015;54(2):147–66. https://doi.org/10.1007/s40262-014-0230-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paré G, et al. Effects of CYP2C19 genotype on outcomes of clopidogrel treatment. N Engl J Med. 2010;363(18):1704–14. https://doi.org/10.1056/NEJMoa1008410.

    Article  CAS  PubMed  Google Scholar 

  24. Scott SA, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013;94(3):317–23. https://doi.org/10.1038/clpt.2013.105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Biswas M, et al. Effects of the ABCB1 C3435T single nucleotide polymorphism on major adverse cardiovascular events in acute coronary syndrome or coronary artery disease patients undergoing percutaneous coronary intervention and treated with clopidogrel: a systematic review and meta-analysis. Expert Opin Drug Saf. 2020;19(12):1605–16. https://doi.org/10.1080/14740338.2020.1836152.

    Article  CAS  PubMed  Google Scholar 

  26. Price MJ, Tantry US, Gurbel PA. The influence of CYP2C19 polymorphisms on the pharmacokinetics, pharmacodynamics, and clinical effectiveness of P2Y12 inhibitors. Rev Cardiovasc Med. 2011;12(1):1–12. https://doi.org/10.3909/ricm0590.

    Article  PubMed  Google Scholar 

  27. Tantry US, et al. First analysis of the relation between CYP2C19 genotype and pharmacodynamics in patients treated with ticagrelor versus clopidogrel. Circ Cardiovasc Genet. 2010;3(6):556–66. https://doi.org/10.1161/CIRCGENETICS.110.958561.

    Article  CAS  PubMed  Google Scholar 

  28. Varenhorst C, et al. Genetic variation of CYP2C19 affects both pharmacokinetic and pharmacodynamic responses to clopidogrel but not prasugrel in aspirin-treated patients with coronary artery disease. Eur Heart J. 2009;30(14):1744–52. https://doi.org/10.1093/eurheartj/ehp157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang JE, et al. Effects of CYP4F2 genetic polymorphisms and haplotypes on clinical outcomes in patients initiated on warfarin therapy. Pharmacogenet Genomics. 2009;19(10):781–9. https://doi.org/10.1097/FPC.0b013e3283311347.

    Article  CAS  PubMed  Google Scholar 

  30. Perera MA, et al. Genetic variants associated with warfarin dose in African-American individuals: a genome-wide association study. Lancet. 2013;382(9894):790–6. https://doi.org/10.1016/s0140-6736(13)60681-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kitzmiller JP, et al. CYP3A4*22 and CYP3A5*3 are associated with increased levels of plasma simvastatin concentrations in the cholesterol and pharmacogenetics study cohort. Pharmacogenet Genomics. 2014;24(10):486–91. https://doi.org/10.1097/fpc.0000000000000079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mazzarotto F, et al. Contemporary insights into the Genetics of hypertrophic cardiomyopathy: toward a new era in clinical testing? J Am Heart Assoc. 2020;9(8):e015473. https://doi.org/10.1161/JAHA.119.015473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Geisterfer-Lowrance AA, et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell. 1990;62(5):999–1006. https://doi.org/10.1016/0092-8674(90)90274-i.

    Article  CAS  PubMed  Google Scholar 

  34. Watkins H, et al. A disease locus for familial hypertrophic cardiomyopathy maps to chromosome 1q3. Nat Genet. 1993;3(4):333–7. https://doi.org/10.1038/ng0493-333.

    Article  CAS  PubMed  Google Scholar 

  35. Carrier L, et al. Mapping of a novel gene for familial hypertrophic cardiomyopathy to chromosome 11. Nat Genet. 1993;4(3):311–3. https://doi.org/10.1038/ng0793-311.

    Article  CAS  PubMed  Google Scholar 

  36. Kimura A, et al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet. 1997;16(4):379–82. https://doi.org/10.1038/ng0897-379.

    Article  CAS  PubMed  Google Scholar 

  37. Ochoa JP, et al. Formin homology 2 domain containing 3 (FHOD3) is a genetic basis for hypertrophic cardiomyopathy. J Am Coll Cardiol. 2018;72(20):2457–67. https://doi.org/10.1016/j.jacc.2018.10.001.

    Article  CAS  PubMed  Google Scholar 

  38. Martiniuk F, et al. Identification of the base-pair substitution responsible for a human acid alpha glucosidase allele with lower “affinity” for glycogen (GAA 2) and transient gene expression in deficient cells. Am J Hum Genet. 1990;47(3):440–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Davies JP, Winchester BG, Malcolm S. Mutation analysis in patients with the typical form of Anderson-Fabry disease. Hum Mol Genet. 1993;2(7):1051–3. https://doi.org/10.1093/hmg/2.7.1051.

    Article  CAS  PubMed  Google Scholar 

  40. Ho CY, et al. Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: insights from the Sarcomeric human cardiomyopathy registry (SHaRe). Circulation. 2018;138(14):1387–98. https://doi.org/10.1161/circulationaha.117.033200.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pinto YM, et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J. 2016;37(23):1850–8. https://doi.org/10.1093/eurheartj/ehv727.

    Article  PubMed  Google Scholar 

  42. Herman DS, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366(7):619–28. https://doi.org/10.1056/NEJMoa1110186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parks SB, et al. Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy. Am Heart J. 2008;156(1):161–9. https://doi.org/10.1016/j.ahj.2008.01.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Muchtar E, Blauwet LA, Gertz MA. Restrictive cardiomyopathy: Genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121(7):819–37. https://doi.org/10.1161/circresaha.117.310982.

    Article  CAS  PubMed  Google Scholar 

  45. Cimiotti D, et al. Genetic restrictive cardiomyopathy: causes and consequences—an integrative approach. Int J Mol Sci. 2021;22(2):558.

    Article  CAS  Google Scholar 

  46. Kostareva A, et al. Genetic Spectrum of idiopathic restrictive cardiomyopathy uncovered by next-generation sequencing. PLoS One. 2016;11(9):e0163362. https://doi.org/10.1371/journal.pone.0163362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brodehl A, et al. The novel αB-crystallin (CRYAB) mutation p.D109G causes restrictive cardiomyopathy. Hum Mutat. 2017;38(8):947–52. https://doi.org/10.1002/humu.23248.

    Article  CAS  PubMed  Google Scholar 

  48. Renard M, et al. Clinical validity of genes for heritable thoracic aortic aneurysm and dissection. J Am Coll Cardiol. 2018;72(6):605–15. https://doi.org/10.1016/j.jacc.2018.04.089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lindsay ME, Dietz HC. Lessons on the pathogenesis of aneurysm from heritable conditions. Nature. 2011;473(7347):308–16. https://doi.org/10.1038/nature10145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Milewicz DM, Dietz HC, Miller DC. Treatment of aortic disease in patients with Marfan syndrome. Circulation. 2005;111(11):e150–7. https://doi.org/10.1161/01.cir.0000155243.70456.f4.

    Article  PubMed  Google Scholar 

  51. LeMaire SA, et al. Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1. Nat Genet. 2011;43(10):996–1000. https://doi.org/10.1038/ng.934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tran-Fadulu V, et al. Analysis of multigenerational families with thoracic aortic aneurysms and dissections due to TGFBR1 or TGFBR2 mutations. J Med Genet. 2009;46(9):607–13. https://doi.org/10.1136/jmg.2008.062844.

    Article  CAS  PubMed  Google Scholar 

  53. Wang L, et al. Mutations in myosin light chain kinase cause familial aortic dissections. Am J Hum Genet. 2010;87(5):701–7. https://doi.org/10.1016/j.ajhg.2010.10.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wallace SE, et al. MYLK pathogenic variants aortic disease presentation, pregnancy risk, and characterization of pathogenic missense variants. Genet Med. 2019;21(1):144–51. https://doi.org/10.1038/s41436-018-0038-0.

    Article  CAS  PubMed  Google Scholar 

  55. Messika-Zeitoun D, et al. Aortic valve calcification: determinants and progression in the population. Arterioscler Thromb Vasc Biol. 2007;27(3):642–8. https://doi.org/10.1161/01.ATV.0000255952.47980.c2.

    Article  CAS  PubMed  Google Scholar 

  56. Yu B, et al. Pathological significance of lipoprotein(a) in aortic valve stenosis. Atherosclerosis. 2018;272:168–74. https://doi.org/10.1016/j.atherosclerosis.2018.03.025.

    Article  CAS  PubMed  Google Scholar 

  57. Thanassoulis G, et al. Genetic associations with Valvular calcification and aortic stenosis. N Engl J Med. 2013;368(6):503–12. https://doi.org/10.1056/NEJMoa1109034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang ZK, et al. Mineral metabolism disturbances are associated with the presence and severity of calcific aortic valve disease. J Zhejiang Univ Sci B. 2015;16(5):362–9. https://doi.org/10.1631/jzus.B1400292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cho HJ, Cho HJ, Kim HS. Osteopontin: a multifunctional protein at the crossroads of inflammation, atherosclerosis, and vascular calcification. Curr Atheroscler Rep. 2009;11(3):206–13. https://doi.org/10.1007/s11883-009-0032-8.

    Article  CAS  PubMed  Google Scholar 

  60. Kiechl S, et al. Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation. 2004;109(18):2175–80. https://doi.org/10.1161/01.cir.0000127957.43874.bb.

    Article  CAS  PubMed  Google Scholar 

  61. Civitelli R, Armamento-Villareal R, Napoli N. Bone turnover markers: understanding their value in clinical trials and clinical practice. Osteoporos Int. 2009;20(6):843–51. https://doi.org/10.1007/s00198-009-0838-9.

    Article  CAS  PubMed  Google Scholar 

  62. Schafer C, et al. The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest. 2003;112(3):357–66. https://doi.org/10.1172/jci17202.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Novaro GM, et al. Clinical factors, but not C-reactive protein, predict progression of calcific aortic-valve disease: the cardiovascular health study. J Am Coll Cardiol. 2007;50(20):1992–8. https://doi.org/10.1016/j.jacc.2007.07.064.

    Article  CAS  PubMed  Google Scholar 

  64. Cimadevilla C, et al. Prognostic value of B-type natriuretic peptide in elderly patients with aortic valve stenosis: the COFRASA-GENERAC study. Heart. 2013;99(7):461–7. https://doi.org/10.1136/heartjnl-2012-303284.

    Article  CAS  PubMed  Google Scholar 

  65. Chin CW, et al. A clinical risk score of myocardial fibrosis predicts adverse outcomes in aortic stenosis. Eur Heart J. 2016;37(8):713–23. https://doi.org/10.1093/eurheartj/ehv525.

    Article  PubMed  Google Scholar 

  66. Kruger R, et al. Extracellular matrix biomarker, fibulin-1, is closely related to NT-proBNP and soluble urokinase plasminogen activator receptor in patients with aortic valve stenosis (the SEAS study). PLoS One. 2014;9(7):e101522. https://doi.org/10.1371/journal.pone.0101522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pitsis A, et al. Mitral valve repair: moving towards a personalized ring. J Cardiothorac Surg. 2019;14(1):108. https://doi.org/10.1186/s13019-019-0926-7.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Priori SG, et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the Management of Patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;36(41):2793–867. https://doi.org/10.1093/eurheartj/ehv316.

    Article  PubMed  Google Scholar 

  69. Goldenberg I, Zareba W, Moss AJ. Long QT syndrome. Curr Probl Cardiol. 2008;33(11):629–94. https://doi.org/10.1016/j.cpcardiol.2008.07.002.

    Article  PubMed  Google Scholar 

  70. Heijman J, et al. Dominant-negative control of cAMP-dependent IKs upregulation in human long-QT syndrome type 1. Circ Res. 2012;110(2):211–9. https://doi.org/10.1161/circresaha.111.249482.

    Article  CAS  PubMed  Google Scholar 

  71. Sanguinetti MC, et al. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell. 1995;81(2):299–307. https://doi.org/10.1016/0092-8674(95)90340-2.

    Article  CAS  PubMed  Google Scholar 

  72. Kambouris NG, et al. Phenotypic characterization of a novel long-QT syndrome mutation (R1623Q) in the cardiac sodium channel. Circulation. 1998;97(7):640–4. https://doi.org/10.1161/01.cir.97.7.640.

    Article  CAS  PubMed  Google Scholar 

  73. Abu-Zeitone A, et al. Efficacy of different beta-blockers in the treatment of long QT syndrome. J Am Coll Cardiol. 2014;64(13):1352–8. https://doi.org/10.1016/j.jacc.2014.05.068.

    Article  CAS  PubMed  Google Scholar 

  74. Wilde AA, et al. Clinical aspects of type 3 long-QT syndrome: an international multicenter study. Circulation. 2016;134(12):872–82. https://doi.org/10.1161/circulationaha.116.021823.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Antzelevitch C, et al. J-wave syndromes expert consensus conference report: emerging concepts and gaps in knowledge. J Arrhythmia. 2016;32(5):315–39. https://doi.org/10.1016/j.joa.2016.07.002.

    Article  Google Scholar 

  76. Kapplinger JD, et al. An international compendium of mutations in the <em>SCN5A</em>−encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm. 2010;7(1):33–46. https://doi.org/10.1016/j.hrthm.2009.09.069.

    Article  PubMed  Google Scholar 

  77. Brugada J, et al. Present status of Brugada syndrome: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72(9):1046–59. https://doi.org/10.1016/j.jacc.2018.06.037.

    Article  PubMed  Google Scholar 

  78. Hu D, et al. Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome. J Am Coll Cardiol. 2014;64(1):66–79. https://doi.org/10.1016/j.jacc.2014.04.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Behr ER, et al. Role of common and rare variants in SCN10A: results from the Brugada syndrome QRS locus gene discovery collaborative study. Cardiovasc Res. 2015;106(3):520–9. https://doi.org/10.1093/cvr/cvv042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Priori SG, et al. Executive summary: HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Heart Rhythm. 2013;10(12):e85–108. https://doi.org/10.1016/j.hrthm.2013.07.021.

    Article  PubMed  Google Scholar 

  81. Bellocq C, et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation. 2004;109(20):2394–7. https://doi.org/10.1161/01.cir.0000130409.72142.fe.

    Article  PubMed  Google Scholar 

  82. Wilde AA, Behr ER. Genetic testing for inherited cardiac disease. Nat Rev Cardiol. 2013;10(10):571–83. https://doi.org/10.1038/nrcardio.2013.108.

    Article  CAS  PubMed  Google Scholar 

  83. Templin C, et al. Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6). Eur Heart J. 2011;32(9):1077–88. https://doi.org/10.1093/eurheartj/ehr076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Antzelevitch C, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115(4):442–9. https://doi.org/10.1161/circulationaha.106.668392.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Waldmann V, et al. Characteristics and clinical assessment of unexplained sudden cardiac arrest in the real-world setting: focus on idiopathic ventricular fibrillation. Eur Heart J. 2018;39(21):1981–7. https://doi.org/10.1093/eurheartj/ehy098.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Haïssaguerre M, et al. Idiopathic ventricular fibrillation: role of Purkinje system and microstructural myocardial abnormalities. JACC Clin Electrophysiol. 2020;6(6):591–608. https://doi.org/10.1016/j.jacep.2020.03.010.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Alders M, et al. Haplotype-sharing analysis implicates chromosome 7q36 harboring DPP6 in familial idiopathic ventricular fibrillation. Am J Hum Genet. 2009;84(4):468–76. https://doi.org/10.1016/j.ajhg.2009.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Marsman RF, et al. A mutation in CALM1 encoding calmodulin in familial idiopathic ventricular fibrillation in childhood and adolescence. J Am Coll Cardiol. 2014;63(3):259–66. https://doi.org/10.1016/j.jacc.2013.07.091.

    Article  CAS  PubMed  Google Scholar 

  89. Beach LY, et al. Idiopathic ventricular fibrillation in a 29-year-old man. Circulation. 2017;136(1):112–4. https://doi.org/10.1161/CIRCULATIONAHA.117.029120.

    Article  PubMed  Google Scholar 

  90. Pflaumer A, Davis AM. Guidelines for the diagnosis and management of Catecholaminergic polymorphic ventricular tachycardia. Heart Lung Circ. 2012;21(2):96–100. https://doi.org/10.1016/j.hlc.2011.10.008.

    Article  PubMed  Google Scholar 

  91. Ackerman MJ, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European heart rhythm association (EHRA). Heart Rhythm. 2011;8(8):1308–39. https://doi.org/10.1016/j.hrthm.2011.05.020.

    Article  PubMed  Google Scholar 

  92. Laitinen PJ, et al. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation. 2001;103(4):485–90. https://doi.org/10.1161/01.cir.103.4.485.

    Article  CAS  PubMed  Google Scholar 

  93. Lahat H, et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet. 2001;69(6):1378–84. https://doi.org/10.1086/324565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bhuiyan ZA, et al. A novel early onset lethal form of catecholaminergic polymorphic ventricular tachycardia maps to chromosome 7p14-p22. J Cardiovasc Electrophysiol. 2007;18(10):1060–6. https://doi.org/10.1111/j.1540-8167.2007.00913.x.

    Article  PubMed  Google Scholar 

  95. Roux-Buisson N, et al. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum Mol Genet. 2012;21(12):2759–67. https://doi.org/10.1093/hmg/dds104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nyegaard M, et al. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am J Hum Genet. 2012;91(4):703–12. https://doi.org/10.1016/j.ajhg.2012.08.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Makita N, et al. Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circ Cardiovasc Genet. 2014;7(4):466–74. https://doi.org/10.1161/circgenetics.113.000459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mohler PJ, et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 2003;421(6923):634–9. https://doi.org/10.1038/nature01335.

    Article  CAS  PubMed  Google Scholar 

  99. Plaster NM, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell. 2001;105(4):511–9. https://doi.org/10.1016/s0092-8674(01)00342-7.

    Article  CAS  PubMed  Google Scholar 

  100. Priori SG, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm. 2013;10(12):1932–63. https://doi.org/10.1016/j.hrthm.2013.05.014.

    Article  PubMed  Google Scholar 

  101. Baruteau AE, Probst V, Abriel H. Inherited progressive cardiac conduction disorders. Curr Opin Cardiol. 2015;30(1):33–9. https://doi.org/10.1097/hco.0000000000000134.

    Article  PubMed  Google Scholar 

  102. Schott JJ, et al. Cardiac conduction defects associate with mutations in SCN5A. Nat Genet. 1999;23(1):20–1. https://doi.org/10.1038/12618.

    Article  CAS  PubMed  Google Scholar 

  103. Asatryan B, Medeiros-Domingo A. Emerging implications of genetic testing in inherited primary arrhythmia syndromes. Cardiol Rev. 2019;27(1):23–33. https://doi.org/10.1097/crd.0000000000000203.

    Article  PubMed  Google Scholar 

  104. Nilius B, et al. Voltage dependence of the Ca<sup>2</sup><sup>+</sup>-activated Cation Channel TRPM4 *. J Biol Chem. 2003;278(33):30813–20. https://doi.org/10.1074/jbc.M305127200.

    Article  CAS  PubMed  Google Scholar 

  105. Stallmeyer B, et al. Mutational spectrum in the Ca(2+)--activated cation channel gene TRPM4 in patients with cardiac conductance disturbances. Hum Mutat. 2012;33(1):109–17. https://doi.org/10.1002/humu.21599.

    Article  CAS  PubMed  Google Scholar 

  106. Asatryan B, Medeiros-Domingo A. Molecular and genetic insights into progressive cardiac conduction disease. EP Europace. 2019;21(8):1145–58. https://doi.org/10.1093/europace/euz109.

    Article  Google Scholar 

  107. Ozaki K, et al. Functional variation in LGALS2 confers risk of myocardial infarction and regulates lymphotoxin-alpha secretion in vitro. Nature. 2004;429(6987):72–5. https://doi.org/10.1038/nature02502.

    Article  CAS  PubMed  Google Scholar 

  108. Ozaki K, et al. Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet. 2002;32(4):650–4. https://doi.org/10.1038/ng1047.

    Article  CAS  PubMed  Google Scholar 

  109. Kimura A, et al. Lack of association between LTA and LGALS2 polymorphisms and myocardial infarction in Japanese and Korean populations. Tissue Antigens. 2007;69:265–9. https://doi.org/10.1111/j.1399-0039.2006.00798.x.

    Article  CAS  PubMed  Google Scholar 

  110. Samani NJ, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357(5):443–53. https://doi.org/10.1056/NEJMoa072366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. McPherson R, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316(5830):1488–91. https://doi.org/10.1126/science.1142447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Schunkert H, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43(4):333–8. https://doi.org/10.1038/ng.784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cheng CY, et al. New loci and coding variants confer risk for age-related macular degeneration in East Asians. Nat Commun. 2015;6:6063. https://doi.org/10.1038/ncomms7063.

    Article  CAS  PubMed  Google Scholar 

  114. Myocardial Infarction Genetics, C, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009;41(3):334–41. https://doi.org/10.1038/ng.327.

    Article  CAS  Google Scholar 

  115. Nioi P, et al. Variant ASGR1 associated with a reduced risk of coronary artery disease. N Engl J Med. 2016;374(22):2131–41. https://doi.org/10.1056/NEJMoa1508419.

    Article  CAS  PubMed  Google Scholar 

  116. Khera AV, et al. Association of Rare and Common Variation in the lipoprotein lipase gene with coronary artery disease. JAMA. 2017;317(9):937–46. https://doi.org/10.1001/jama.2017.0972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Crosby J, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371(1):22–31. https://doi.org/10.1056/NEJMoa1307095.

    Article  CAS  PubMed  Google Scholar 

  118. Lim GB. Polymorphisms in ANGPTL4 link triglycerides with CAD. Nat Rev Cardiol. 2016;13(5):245. https://doi.org/10.1038/nrcardio.2016.46.

    Article  PubMed  Google Scholar 

  119. Guo J, et al. Association between 9p21.3 genomic markers and coronary artery disease in East Asians: a meta-analysis involving 9,813 cases and 10,710 controls. Mol Biol Rep. 2013;40(1):337–43. https://doi.org/10.1007/s11033-012-2066-1.

    Article  CAS  PubMed  Google Scholar 

  120. Mabuchi H. Half a century Tales of familial hypercholesterolemia (FH) in Japan. J Atheroscler Thromb. 2017;24(3):189–207. https://doi.org/10.5551/jat.RV16008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Do R, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2015;518(7537):102–6. https://doi.org/10.1038/nature13917.

    Article  CAS  PubMed  Google Scholar 

  122. Deloukas P, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45(1):25–33. https://doi.org/10.1038/ng.2480.

    Article  CAS  PubMed  Google Scholar 

  123. Flister MJ, et al. SH2B3 is a genetic determinant of cardiac inflammation and fibrosis. Circ Cardiovasc Genet. 2015;8(2):294–304. https://doi.org/10.1161/circgenetics.114.000527.

    Article  CAS  PubMed  Google Scholar 

  124. Smits PC, et al. Coronary artery disease: arterial remodelling and clinical presentation. Heart. 1999;82(4):461–4. https://doi.org/10.1136/hrt.82.4.461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Reilly MP, et al. Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet. 2011;377(9763):383–92. https://doi.org/10.1016/s0140-6736(10)61996-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Roberts R. A genetic basis for coronary artery disease. Trends Cardiovasc Med. 2015;25(3):171–8. https://doi.org/10.1016/j.tcm.2014.10.008.

    Article  CAS  PubMed  Google Scholar 

  127. Levy D, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41(6):677–87. https://doi.org/10.1038/ng.384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Newton-Cheh C, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41(6):666–76. https://doi.org/10.1038/ng.361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bombard Y, et al. The value of personalizing medicine: medical oncologists’ views on gene expression profiling in breast cancer treatment. Oncologist. 2015;20(4):351–6. https://doi.org/10.1634/theoncologist.2014-0268.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bonter K, et al. Personalised medicine in Canada: a survey of adoption and practice in oncology, cardiology and family medicine. BMJ Open. 2011;1(1):e000110. https://doi.org/10.1136/bmjopen-2011-000110.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Gray SW, et al. Attitudes of patients with cancer about personalized medicine and somatic genetic testing. J Oncol Pract. 2012;8(6):329–35. https://doi.org/10.1200/jop.2012.000626. 2 p following 335

    Article  PubMed  PubMed Central  Google Scholar 

  132. Hammack CM, Brelsford KM, Beskow LM. Thought leader perspectives on participant protections in precision medicine research. J Law Med Ethics. 2019;47(1):134–48. https://doi.org/10.1177/1073110519840493.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Pearce C, et al. Delivering genomic medicine in the United Kingdom National Health Service: a systematic review and narrative synthesis. Genet Med. 2019;21(12):2667–75. https://doi.org/10.1038/s41436-019-0579-x.

    Article  PubMed  Google Scholar 

  134. Di Paolo A, et al. Personalized medicine in Europe: not yet personal enough? BMC Health Serv Res. 2017;17(1):289. https://doi.org/10.1186/s12913-017-2205-4.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Gelernter D. Mirror Worlds: or the Day Software Puts the Universe in a Shoebox...How It Will Happen and What It Will Mean.

    Google Scholar 

  136. Bruynseels K, Santoni de Sio F, van den Hoven J. Digital twins in health care: ethical implications of an emerging engineering paradigm. Front Genet. 2018;9:31. https://doi.org/10.3389/fgene.2018.00031.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Corral-Acero J, et al. The ‘Digital Twin’ to enable the vision of precision cardiology. Eur Heart J. 2020;41(48):4556–64. https://doi.org/10.1093/eurheartj/ehaa159.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sheikhy, A., Fallahzadeh, A., Aghaei Meybodi, H.R., Hosseini, K. (2022). Precision Medicine in Cardiovascular Disease Practice. In: Hasanzad, M. (eds) Precision Medicine in Clinical Practice. Springer, Singapore. https://doi.org/10.1007/978-981-19-5082-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5082-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5081-0

  • Online ISBN: 978-981-19-5082-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics