Skip to main content
Log in

Something old, something new in allelopathy review: what grassland ecosystems tell us

  • Review
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Allelopathy may be a relevant phenomenon in the dynamics of grasslands, a biome that presents high biodiversity and provides unique ecosystem services. Research on allelopathy in grasslands has been conducted worldwide and important suggestions to improve studies have been made in the recent past. However, few general patterns have been established so far. In this review, we report and discuss allelopathy research conducted in grassland ecosystems. We carried out a systematic search for allelopathy studies in grasslands and assessed descriptive, methodological and conceptual aspects of each article. We also evaluated if research quality has improved in recent years. We found that the studies investigated interactions mostly involving herbaceous species in many types of grasslands around the world. The studies have assessed the potential of allelopathy in structuring natural grasslands and artificial pastures and of applying allelopathy to bioherbicide development and to restoration of natural ecosystems. We observed inconsistency in terminology and discussed allelopathy definition. Moreover, we found that in recent years, allelopathy research has improved in some experimental design issues, but not in others. This shows that not all recommendations in literature have been taken into account. Otherwise, innovative methods and analytical tools have emerged. In spite of slow progress, allelopathy has shown potential relevance in dynamics and restoration of grasslands, as well as in weed management in cultivated systems. Thus, a better knowledge about allelopathy can lead to advances in science and in applied fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alford ÉR, Vivanco JM, Paschke MW (2009) The effects of flavonoid allelochemicals from knapweeds on legume-rhizobia candidates for restoration. Restor Ecol 17:506–514

    Article  Google Scholar 

  • Allen VG, Batello C, Berretta EJ et al (2011) An international terminology for grazing lands and grazing animals. Grass Forage Sci 66:2–28

    Article  Google Scholar 

  • Araniti F, Gulli T, Marrelli M, Statti G, Gelsomino A, Abenavoli MA (2016) Artemisia arborescens L. leaf litter: phytotoxic activity and phytochemical characterization. Acta Physiol Plant 38:1–12

    Article  CAS  Google Scholar 

  • Aslam F, Khaliq A, Matloob A, Tanveer A, Hussain S, Zahir ZA (2017) Allelopathy in agro-ecosystems: a critical review of wheat allelopathy-concepts and implications. Chemoecology 27:1–24

    Article  CAS  Google Scholar 

  • Bainard LD, Brown PD, Upadhyaya MK (2009) Inhibitory effect of tall hedge mustard (Sisymbrium loeselii) allelochemicals on rangeland plants and arbuscular mycorrhizal fungi. Weed Sci 57:386–393

    Article  CAS  Google Scholar 

  • Batish DR, Singh HP, Kohli RK (2001) Vegetation exclusion under Casuarina equisetifolia L.: does allelopathy play a role? Community Ecol 2:93–100

    Article  Google Scholar 

  • Belz RG (2007) Allelopathy in crop/weed interactions—an update. Pest Manag Sci 63:308–326

    Article  CAS  PubMed  Google Scholar 

  • Bennett AE, Thomsen M, Strauss SY (2011) Multiple mechanisms enable invasive species to suppress native species. Am J Bot 98:1086–1094

    Article  PubMed  Google Scholar 

  • Bernhard-Reversat F (1999) The leaching of Eucalyptus hybrids and Acacia auriculiformis leaf litter: laboratory experiments on early decomposition and ecological implications in congolese tree plantations. Appl Soil Ecol 12:251–261

    Article  Google Scholar 

  • Bhowmik PC, Inderjit (2003) Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot 22:661–671

    Article  Google Scholar 

  • Chen S, Xiao S, Callaway RM (2012) Light intensity alters the allelopathic effects of an exotic invader. Plant Ecol Divers 5:521–526

    Article  Google Scholar 

  • Chou CH (1999) Roles of allelopathy in plant biodiversity and sustainable agriculture. Crit Rev Plant Sci 18:609–636

    Article  Google Scholar 

  • Chou CH, Lee YY (1991) Allelopathic dominance of Miscanthus transmorrisonensis in an alpine grassland community in Taiwan. J Chem Ecol 17:2267–2281

    Article  CAS  PubMed  Google Scholar 

  • Chou CH, Leu LL (1992) Allelopathic substances and interactions of Delonix regia (BOJ) RAF. J Chem Ecol 18:2285–2303

    Article  CAS  PubMed  Google Scholar 

  • Chou CH, Young CC (1974) Effects of osmotic concentration and pH on plant growth. Taiwania 19:157–162

    Google Scholar 

  • Chou CH, Hwang SY, Peng CI et al (1987) The selective allelopathic interaction of a pasture-forest intercropping in Taiwan. Plant Soil 98:31–41

    Article  CAS  Google Scholar 

  • Dayan FE, Duke SO (2010) Natural products for weed management in organic farming in the USA. Outlooks Pest Manag 21:156–160

    Article  Google Scholar 

  • De Albuquerque MB, Santos RC, Lima LM et al (2011) Allelopathy, an alternative tool to improve cropping systems. A review Agron Sustain Dev 31:379–395

    Article  Google Scholar 

  • Del Moral R, Muller CH (1970) The allelopathic effects of Eucalyptus camaldulensis. Am Midl Nat 83:254–282

    Article  Google Scholar 

  • Del Moral R, Willis RJ, Ashton DH (1978) Suppression of coastal heath vegetation by Eucalyptus baxteri. Aust J Bot 26:203–219

    Article  Google Scholar 

  • Djurdjević L, Gajić G, Kostić O et al (2013) Allelopathic effects of Chrysopogon gryllus L. in Chrysopogonetum pannonicum Stjep.-Ves. steppe community at Deliblato Sands (Serbia). Allelopath J 32:133–148

    Google Scholar 

  • Ehlers BK (2011) Soil microorganisms alleviate the allelochemical effects of a thyme monoterpene on the performance of an associated grass species. PLoS One 6:e26321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Einhellig FA (1996) Interactions involving allelopathy in cropping systems. Agron J 88:886–893

    Article  CAS  Google Scholar 

  • El Ayeb-Zakhama A, Sakka-Rouis L, Bergaoui A et al (2015) Chemical composition and allelopathic potential of essential oils obtained from Acacia cyanophylla Lindl. cultivated in Tunisia. Chem Biodivers 12:615–626

    Article  PubMed  Google Scholar 

  • Fanelli D (2012) Negative results are disappearing from most disciplines and countries. Scientometrics 90:891–904

    Article  Google Scholar 

  • Gibson (2009) Grasses and grassland ecology. Oxford University Press, New York

    Google Scholar 

  • Gliessman SR, Muller CH (1978) The allelopathic mechanisms of dominance in bracken (Pteridium aquilinum). J Chem Ecol 4:337–362

    Article  Google Scholar 

  • Gniazdowska A, Bogatek R (2005) Allelopathic interactions between plants. Multi site action of allelochemicals. Acta Physiol Plant 27:395–407

    Article  CAS  Google Scholar 

  • Granéli E, Pavia H (2006) Allelopathy in marine ecosystems. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Netherlands, pp 415–431

    Chapter  Google Scholar 

  • Gray JC (1978) Absorption of polyphenols by polyvinylpyrrolidone and polystyrene resins. Phytochemistry 17:495–497

    Article  CAS  Google Scholar 

  • Habermann E, Pontes FC, Pereira VC et al (2016) Phytotoxic potential of young leaves from Blepharocalyx salicifolius (Kunth) O. Berg (Myrtaceae). Brazilian J Biol 76:531–538

    Article  CAS  Google Scholar 

  • Halligan JP (1973) Bare areas associated with shrub stands in grassland: the case of Artemisia californica. Bioscience 23:429–432

    Article  Google Scholar 

  • Harper JL (1994) Population Biology of Plants. Academic Press, London

    Google Scholar 

  • He H, Song Q, Wang Y, Yu S (2014) Phytotoxic effects of volatile organic compounds in soil water taken from a Eucalyptus urophylla plantation. Plant Soil 377:203–215

    Article  CAS  Google Scholar 

  • Heděnec P, Novotný D, Ustak S et al (2014) Allelopathic effect of new introduced biofuel crops on the soil biota: a comparative study. Eur J Soil Biol 63:14–20

    Article  Google Scholar 

  • Houx JH, Garrett HE, McGraw RL (2008) Applications of black walnut husks can improve orchardgrass and red clover yields in silvopasture and alley cropping plantings. Agrofor Syst 73:181–187

    Article  Google Scholar 

  • IAS—International Allelopathy Society (1996) Constitution and Bylaw of IAS. IAS Newsletter, Cádiz-Spain

    Google Scholar 

  • Imatomi M, Novaes P, Matos AP et al (2013) Phytotoxic effect of bioactive compounds isolated from Myrcia tomentosa (Myrtaceae) leaves. Biochem Syst Ecol 46:29–35

    Article  CAS  Google Scholar 

  • Inderjit, Callaway RM (2003) Experimental designs for the study of allelopathy. Plant Soil 256:1–11

    Article  CAS  Google Scholar 

  • Inderjit, Dakshini KMM (1995) On laboratory bioassays in allelopathy. Bot Rev 61:28–44

    Article  Google Scholar 

  • Inderjit, Nilsen ET (2003) Bioassays and field studies for allelopathy in terrestrial plants: progress and problems. Crit Rev Plant Sci 22:221–238

    Article  Google Scholar 

  • Inderjit, Weiner J (2001) Plant allelochemical interference or soil chemical ecology? Perspect Plant Ecol Evol Syst 4:3–12

    Article  Google Scholar 

  • Inderjit, Weston LA (2000) Are laboratory bioassays for allelopathy suitable for prediction of field responses? J Chem Ecol 26:2111–2118

    Article  CAS  Google Scholar 

  • Inderjit, Pollock JL, Callaway RM, Holben W (2008) Phytotoxic effects of (±)-catechin in vitro, in soil, and in the field. PLoS One 3:e2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inderjit, Wardle DA, Karban R, Callaway RM (2011) The ecosystem and evolutionary contexts of allelopathy. Trends Ecol Evol 26:655–662

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Kaur R, Kaur S et al (2009) Taking ecological function seriously: soil microbial communities can obviate allelopathic effects of released metabolites. PLoS One 4:e4700

    Article  PubMed  PubMed Central  Google Scholar 

  • Komai K, Tang CS (1989) Chemical constituents and inhibitory activities of essential oils from Cyperus brevifolius and C. kyllingia. J Chem Ecol 15:2171–2176

    Article  CAS  PubMed  Google Scholar 

  • Lau JA, Puliafico KP, Kopshever JA et al (2008) Inference of allelopathy is complicated by effects of activated carbon on plant growth. New Phytol 178:412–423

    Article  CAS  PubMed  Google Scholar 

  • Lipinska H, Harkot W (2007) Allelopathic activity of grassland species. Allelopath J 19:3–36

    Google Scholar 

  • Loydi A, Donath TW, Eckstein RL, Otte A (2015) Non-native species litter reduces germination and growth of resident forbs and grasses: allelopathic, osmotic or mechanical effects? Biol Invasions 17:581–595

    Article  Google Scholar 

  • Macfarlane MJ, Scott D, Jarvis P (1982a) Allelopathic effects of white clover 1. Germination and chemical bioassay. New Zeal J Agric Res 25:503–510

    Article  Google Scholar 

  • Macfarlane MJ, Scott D, Jarvis P (1982b) Allelopathic effects of white clover 2. Field investigations in tussock grasslands. New Zeal J Agric Res 25:511–518

    Article  Google Scholar 

  • Macías FA, Castellano D, Molinillo JMG (2000) Search for a standard phytotoxic bioassay for allelochemicals. Selection of standard target species. J Agric Food Chem 48:2512–2521

    Article  PubMed  Google Scholar 

  • Macías FA, Molinillo JMG, Galindo JCG et al (2001) The use of allelopathic studies in the search for natural herbicides. J Crop Prod 4:237–255

    Article  Google Scholar 

  • Macías FA, Molinillo JMG, Varela RM, Galindo JCG (2007) Allelopathy—a natural alternative for weed control. Pest Manag Sci 63:327–348

    Article  PubMed  Google Scholar 

  • Macías FA, Oliveros-Bastidas A, Marín D et al (2014) Evidence for an allelopathic interaction between rye and wild oats. J Agric Food Chem 62:9450–9457

    Article  PubMed  Google Scholar 

  • Markó G, Ónodi G, Kertész M, Altbäcker V (2011) Rabbit grazing as the major source of intercanopy heterogeneity in a juniper shrubland. Arid L Res Manag 25:176–193

    Article  Google Scholar 

  • May L, Baldwin LK (2011) Linking field based studies with greenhouse experiments: the impact of Centaurea stoebe (= C. maculosa) in British Columbia grasslands. Biol Invasions 13:919–931

    Article  Google Scholar 

  • Metlen KL, Aschehoug ET, Callaway RM (2013) Competitive outcomes between two exotic invaders are modified by direct and indirect effects of a native conifer. Oikos 122:632–640

    Article  Google Scholar 

  • Navarro-Cano JA, Barberá GG, Ruiz-Navarro A, Castillo VM (2009) Pine plantation bands limit seedling recruitment of a perennial grass under semiarid conditions. J Arid Environ 73:120–126

    Article  Google Scholar 

  • Novaes P, Imatomi M, Varela RM et al (2013) Allelopathic potential of Rapanea umbellata leaf extracts. Chem Biodivers 10:1539–1548

    Article  CAS  PubMed  Google Scholar 

  • Nyanumba SM, Cahill JF Jr (2012) Effect of aboveground litter on belowground plant interactions in a native Rough Fescue grassland. Basic Appl Ecol 13:615–622

    Article  Google Scholar 

  • Oliveira SCC, Campos ML (2006) Allelopathic effects of Solanum palinacanthum leaves on germination and seedling growth of Sesamum indicum. Allelopathy J 18:331–338

    Google Scholar 

  • Overbeck G, Muller S, Fidelis A et al (2007) Brazil’s neglected biome: The South Brazilian Campos. Perspect Plant Ecol Evol Syst 9:101–116

    Article  Google Scholar 

  • Parepa M, Bossdorf O (2016) Testing for allelopathy in invasive plants: it all depends on the substrate! Biol Invasions 18:2975–2982

    Article  Google Scholar 

  • Parker VT, Muller CH (1979) Allelopathic dominance by a tree-associated herb in a California annual grassland. Oecologia 37:315–320

    Article  PubMed  Google Scholar 

  • Perry LG, Cronin SA, Paschke MW (2009) Native cover crops suppress exotic annuals and favor native perennials in a greenhouse competition experiment. Plant Ecol 204:247–259

    Article  Google Scholar 

  • Qin B, Lau JA, Kopshever J et al (2007) No evidence for root-mediated allelopathy in Centaurea solstitialis, a species in a commonly allelopathic genus. Biol Invasions 9:897–907

    Article  Google Scholar 

  • Reigosa M, Gomes AS, Ferreira AG, Borghetti F (2013) Allelopathic research in Brazil. Acta Bot Brasilica 27:629–646

    Article  Google Scholar 

  • Reinhart KO, Rinella M (2011) Comparing susceptibility of eastern and western US grasslands to competition and allelopathy from spotted knapweed [Centaurea stoebe L. subsp. micranthos (Gugler) Hayek]. Plant Ecol 212:821–828

    Article  Google Scholar 

  • Renne IJ, Sinn BT, Shook GW et al (2014) Eavesdropping in plants: delayed germination via biochemical recognition. J Ecol 102:86–94

    Article  Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Publishers, New York

    Google Scholar 

  • Ridenour WM, Callaway RM (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126:444–450

    Article  PubMed  Google Scholar 

  • Rout ME, Chrzanowski TH, Smith WK, Gough L (2013) Ecological impacts of the invasive grass Sorghum halepense on native tallgrass prairie. Biol Invasions 15:327–339

    Article  Google Scholar 

  • Ruprecht E, Józsa J, Ölvedi TB, Simon J (2010) Differential effects of several “litter” types on the germination of dry grassland species. J Veg Sci 21:1069–1081

    Article  Google Scholar 

  • Schneider AA (2007) A flora naturalizada no Estado do Rio Grande do Sul, Brasil: herbáceas subespontâneas. Biociências 15:257–268

    Google Scholar 

  • Scognamiglio M, D’Abrosca B, Esposito A et al (2013) Plant growth inhibitors: allelopathic role or phytotoxic effects? Focus on Mediterranean biomes. Phytochem Rev 12:803–830

    Article  CAS  Google Scholar 

  • Silva ER, Overbeck GE, Soares GLG (2014) Phytotoxicity of volatiles from fresh and dry leaves of two Asteraceae shrubs: evaluation of seasonal effects. South African J Bot 93:14–18

    Article  CAS  Google Scholar 

  • Silva ER, Ferreira PMA, Overbeck GE, Soares GLG (2015) Does the phytotoxic shrub Heterothalamus psiadioides affect a plant community through allelopathy? Plant Ecol 216:87–97

    Article  Google Scholar 

  • Smith AE (1999) Allelopathy in the grassland ecosystems. In: Narwal SS (ed) Allelopathy update: Basic and applied aspects. Science Publishers, United States, pp 91–109

    Google Scholar 

  • Soltys D, Krasuska U, Bogatek R, Gniazdowska A (2013) Allelochemicals as bioherbicides - present and perspectives. In: Price AJ, Kelton JA (eds) Herbicides—current research and case studies in use. InTech, Croatia, pp 517–542

    Google Scholar 

  • Souza Filho APS, Vasconcelos MAM, Zoghbi MGB, Cunha RL (2009) Efeitos potencialmente alelopáticos dos óleos essenciais de Piper hispidinervium C. DC. e Pogostemon heyneanus Benth sobre plantas daninhas. Acta Amaz 39:389–396

    Article  CAS  Google Scholar 

  • Souza LS, Velini ED, Martins D, Rosolem CA (2006) Efeito alelopático de capim-braquiária (Brachiaria decumbens) sobre o crescimento inicial de sete espécies de plantas cultivadas. Planta Daninha 24:657–668

    Article  Google Scholar 

  • Thorpe AS, Thelen GC, Diaconu A, Callaway RM (2009) Root exudate is allelopathic in invaded community but not in native community: field evidence for the novel weapons hypothesis. J Ecol 97:641–645

    Article  Google Scholar 

  • Tian Y, Feng Y, Liu C (2007) Addition of activated charcoal to soil after clearing Ageratina adenophora stimulates growth of forbs and grasses in China. Trop Grasslands 41:285–291

    Google Scholar 

  • Wardle DA, Nicholson KS, Ahmed M (1992a) Comparison of osmotic and allelopathic effects of grass leaf extracts on grass seed germination and radicle elongation. Plant Soil 140:315–319

    Article  Google Scholar 

  • Wardle DA, Nicholson KS, Rahman A (1992b) Influence of pasture grass and legume swards on seedling emergence and growth of Carduus nutans L. Weed Res 32:119–128

    Article  Google Scholar 

  • Wardle DA, Nicholson KS, Rahman A (1993) Influence of plant age on the allelopathic potential of nodding thistle (Carduus nutans L.) against pasture grasses and legumes. Weed Res 33:69–78

    Article  Google Scholar 

  • Wardle DA, Nicholson KS, Ahmed M, Rahman A (1994) Interference effects of the invasive plant Carduus nutans L. against the nitrogen fixation ability of Trifolium repens L. Plant Soil 163:287–297

    Article  CAS  Google Scholar 

  • Weidenhamer JD, Macías FA, Fischer NH, Williamson GB (1993) Just how insoluble are monoterpenes? J Chem Ecol 19:1799–1807

    Article  CAS  PubMed  Google Scholar 

  • Weidenhamer JD, Mohney BK, Shihada N, Rupasinghe M (2014) Spatial and temporal dynamics of root exudation: how important is heterogeneity in allelopathic interactions? J Chem Ecol 40:940–952

    Article  CAS  PubMed  Google Scholar 

  • Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479

    Article  CAS  PubMed  Google Scholar 

  • Weir TL, Bais HP, Stull VJ et al (2006) Oxalate contributes to the resistance of Gaillardia grandiflora and Lupinus sericeus to a phytotoxin produced by Centaurea maculosa. Planta 223:785–795

    Article  CAS  PubMed  Google Scholar 

  • Willis RJ (1985) The historical bases of the concept of allelopathy. J Hist Biol 18:71–102

    Article  Google Scholar 

  • Yamamoto Y (2009) Movement of allelopathic compound coumarin from plant residue of sweet vernalgrass (Anthoxanthum odoratum L.) to soil. Grassl Sci 55:36–40

    Article  CAS  Google Scholar 

  • Zhang Y, Tang S, Liu K et al (2015) The allelopathic effect of Potentilla acaulis on the changes of plant community in grassland, northern China. Ecol Res 30:41–47

    Article  CAS  Google Scholar 

  • Zhao-Jiang Z, Ru-Min Z, Pei-Jun G et al (2011) Allelopathic effects of Artemisia frigida Willd. on growth of pasture grasses in Inner Mongolia. China. Biochem Syst Ecol 39:377–383

    Article  Google Scholar 

  • Zhu S, Lu X, Dong L et al (2005) Quantitative determination of compounds in tobacco essential oils by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. J Chromatogr A 1086:107–114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the PhD scholarship granted to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliane Regina da Silva.

Additional information

Handling Editor: Michael Heethoff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 44 kb)

Supplementary material 2 (DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, E.R., Overbeck, G.E. & Soares, G.L.G. Something old, something new in allelopathy review: what grassland ecosystems tell us. Chemoecology 27, 217–231 (2017). https://doi.org/10.1007/s00049-017-0249-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-017-0249-x

Keywords

Navigation