Skip to main content

Advertisement

Log in

Structural classification of EZH2 inhibitors and prospects for the treatment of tumor: a review

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Zeste homolog enhancer 2 (EZH2) is one of the core catalytic subunits of PRC2, which mainly mediates histone H3K27 trimethylation to regulate the expression of tumor suppressor genes. Tazemetostat has been approved by the FDA as the first EZH2 inhibitor for the treatment of epithelioid sarcoma in 2020. In recent years, the role of EZH2 in tumor pathophysiology has been further studied, and more and more novel EZH2 inhibitors have been reported and applied in the treatment of lymphoma, prostate cancer, lung cancer and other cancers. In this article, we analyzed and summarized the structural features and the biological activity of various novel EZH2 inhibitors reported since 2018. Simultaneously, we reclassified the reported novel EZH2 inhibitors from the perspective of structure, and discussed their ability to treat malignant tumors and their future development trend. These provides a new strategy for the research of EZH2 inhibitors in medicinal chemistry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov. 2012;11:384–400.

    Article  CAS  PubMed  Google Scholar 

  2. Pasini D, Di Croce L. Emerging roles for Polycomb proteins in cancer. Curr Opin Genet Dev. 2016;36:50–58.

    Article  CAS  PubMed  Google Scholar 

  3. Eich ML, Athar M, Ferguson JE 3rd, Varambally S. EZH2-targeted therapies in cancer: hype or a reality. Cancer Res. 2020;80:5449–58.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zeng J, Zhang J, Sun Y, Wang J, Ren C, Banerjee S, et al. Targeting EZH2 for cancer therapy: from current progress to novel strategies. Eur J Med Chem. 2022;238:114419.

    Article  CAS  PubMed  Google Scholar 

  5. Richart L, Margueron R. Drugging histone methyltransferases in cancer. Curr Opin Chem Biol. 2020;56:51–62.

    Article  CAS  PubMed  Google Scholar 

  6. Laible G, Wolf A, Dorn R, Reuter G, Nislow C, Lebersorger A, et al. Mammalian homologues of the Polycomb-group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiae telomeres. EMBO J. 1997;16:3219–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res. 2008;647:21–29.

    Article  CAS  PubMed  Google Scholar 

  8. Dou D, Zhang Y. EZH2 and breast cancer and its inhibitors. J Med Inf. 2020;33:47–50.

    Google Scholar 

  9. Brooun A, Gajiwala KS, Deng YL, Liu W, Bolaños B, Bingham P, et al. Polycomb repressive complex 2 structure with inhibitor reveals a mechanism of activation and drug resistance. Nat Commun. 2016;7:11384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Laugesen A, Højfeldt JW, Helin K. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol Cell. 2019;74:8–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment. J Hematol Oncol 2020;13:104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang B, Song T, Sun L. EZH2 and Cancer. Acta Medicinae Universitatis Sci et Technologiae Huazhong. 2022;51:415–9.

    Google Scholar 

  13. Tang Y, Li F, Chen W. Progress in anti-cancer target EZH2 and its inhibitors. Central South Pharmacy 2021;19:1398–404.

    Google Scholar 

  14. Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016;22:128–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang X, Yan J, Zhang M, Wang Y, Chen Y, Fu X, et al. Targeting epigenetic crosstalk as a therapeutic strategy for EZH2-aberrant solid tumors. Cell 2018;175:186–199.e19.

    Article  CAS  PubMed  Google Scholar 

  16. Garber K. Histone-writer cancer drugs enter center stage [published correction appears in Nat Biotechnol. 2020 Sep;38(9):1098]. Nat Biotechnol. 2020;38:909–12.

    Article  CAS  PubMed  Google Scholar 

  17. Li L, Tang H, Guo Y, et al. Research progress of histone lysine methyltransferase inhibitors. Prog Pharm Sci. 2021;45:697–706.

    Google Scholar 

  18. Hoy SM. Tazemetostat: first approval. Drugs 2020;80:513–21.

    Article  PubMed  Google Scholar 

  19. Morin RD, Arthur SE, Assouline S. Treating lymphoma is now a bit EZ-er. Blood Adv. 2021;5:2256–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fioravanti R, Stazi G, Zwergel C, Valente S, Mai A. Six Years (2012-2018) of Researches on Catalytic EZH2 Inhibitors: The Boom of the 2-Pyridone Compounds. Chem Rec 2018;18:1818–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yan W, Herman JG, Guo M. Epigenome-based personalized medicine in human cancer. Epigenomics 2016;8:119–33.

    Article  CAS  PubMed  Google Scholar 

  22. Keam SJ. Valemetostat Tosilate: First Approval [published correction appears in Drugs. 2022 Nov;82(17):1689]. Drugs. 2022;82:1621–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu B, Shen X, Zhang L, Liu D, Zhang C, Cao J, et al. Discovery of EBI-2511: A Highly Potent and Orally Active EZH2 Inhibitor for the Treatment of Non-Hodgkin’s Lymphoma. ACS Med Chem Lett. 2018;9:98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Feng Q, He H, Gao T, Zhang Q, Liu Z, Tao X, et al. Synthesis and biological evaluation of benzomorpholine derivatives as novel EZH2 inhibitors for anti-non-small cell lung cancer activity. Mol Divers. 2019;23:681–96.

    Article  CAS  PubMed  Google Scholar 

  25. He H, Hu X, Teng F, Liu Z, Zhang Q, Feng Z, et al. Design and synthesis of (E)-1,2-diphenylethene-based EZH2 inhibitors. Bioorg Med Chem Lett. 2020;30:126957.

    Article  CAS  PubMed  Google Scholar 

  26. Du F, Zhou Q, Sun W, Yang C, Wu C, Wang L, et al. 5-Hydroxyindole-Based EZH2 Inhibitors Assembled via TCCA-Catalyzed Condensation and Nenitzescu Reactions. Molecules. 2020;25:2059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu Z, Hu X, Wang Q, Wu X, Zhang Q, Wei W, et al. Design and Synthesis of EZH2-Based PROTACs to Degrade the PRC2 Complex for Targeting the Noncatalytic Activity of EZH2. J Med Chem. 2021;64:2829–48.

    Article  CAS  PubMed  Google Scholar 

  28. Wang C, Chen X, Liu X, Lu D, Li S, Qu L, et al. Discovery of precision targeting EZH2 degraders for triple-negative breast cancer. Eur J Med Chem. 2022;238:114462.

    Article  CAS  PubMed  Google Scholar 

  29. Khanna A, Côté A, Arora S, Moine L, Gehling VS, Brenneman J, et al. Design, Synthesis, and Pharmacological Evaluation of Second Generation EZH2 Inhibitors with Long Residence Time. ACS Med Chem Lett. 2020;11:1205–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Romanelli A, Stazi G, Fioravanti R, Zwergel C, Di Bello E, Pomella S, et al. Design of First-in-Class Dual EZH2/HDAC Inhibitor: Biochemical Activity and Biological Evaluation in Cancer Cells. ACS Med Chem Lett. 2020;11:977–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou Q, Jia L, Du F, Dong X, Sun W, Wang L, et al. Design, synthesis and biological activities of pyrrole-3-carboxamide derivatives as EZH2 (enhancer of zeste homologue 2 inhibitors and anticancer agents[J]. N J Chem. 2020;44:2247–55.

    Article  CAS  Google Scholar 

  32. Zhou B, Liang X, Mei H, Qi S, Jiang Z, Wang A, et al. Discovery of IHMT-EZH2-115 as a Potent and Selective Enhancer of Zeste Homolog 2 (EZH2) Inhibitor for the Treatment of B-Cell Lymphomas. J Med Chem. 2021;64:15170–88.

    Article  CAS  PubMed  Google Scholar 

  33. Wang C, Qu L, Li S, Yin F, Ji L, Peng W, et al. Discovery of First-in-Class Dual PARP and EZH2 Inhibitors for Triple-Negative Breast Cancer with Wild-Type BRCA. J Med Chem. 2021;64:12630–50.

    Article  CAS  PubMed  Google Scholar 

  34. Tu Y, Sun Y, Qiao S, Luo Y, Liu P, Jiang ZX, et al. Design, Synthesis, and Evaluation of VHL-Based EZH2 Degraders to Enhance Therapeutic Activity against Lymphoma. J Med Chem. 2021;64:10167–84.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Q, Hu X, Li L, Zhang L, Wan G, Feng Q, et al. The discovery of SKLB-0335 as a paralog-selective EZH2 covalent inhibitor. Chem Commun. 2021;57:3006–9.

    Article  CAS  Google Scholar 

  36. Zhang Q, Chen X, Hu X, Duan X, Wan G, Li L, et al. Covalent inhibitors of EZH2: Design, synthesis and evaluation. Biomed Pharmacother. 2022;147:112617.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Q, Chen X, Cao J, Yang W, Wan G, Feng Q, et al. Discovery of a Novel Covalent EZH2 Inhibitor Based on Tazemetostat Scaffold for the Treatment of Ovarian Cancer. J Med Chem. 2023;66:1725–41.

    Article  CAS  PubMed  Google Scholar 

  38. Lu D, Wang C, Qu L, Yin F, Li S, Luo H, et al. Histone Deacetylase and Enhancer of Zeste Homologue 2 Dual Inhibitors Presenting a Synergistic Effect for the Treatment of Hematological Malignancies. J Med Chem. 2022;65:12838–59.

    Article  CAS  PubMed  Google Scholar 

  39. Guo Z, Sun Y, Liang L, Lu W, Luo B, Wu Z, et al. Design and Synthesis of Dual EZH2/BRD4 Inhibitors to Target Solid Tumors. J Med Chem. 2022;65:6573–92.

    Article  CAS  PubMed  Google Scholar 

  40. Mei H, Wu H, Yang J, Zhou B, Wang A, Hu C, et al. Discovery of IHMT-337 as a potent irreversible EZH2 inhibitor targeting CDK4 transcription for malignancies. Signal Transduct Target Ther. 2023;8:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang N, Liao P, Zuo Y, Zhang L, Jiang R. Design, Synthesis, and Biological Evaluation of a Potent Dual EZH2-BRD4 Inhibitor for the Treatment of Some Solid Tumors. J Med Chem. 2023;66:2646–62.

    Article  CAS  PubMed  Google Scholar 

  42. Kung PP, Bingham P, Brooun A, Collins M, Deng YL, Dinh D, et al. Optimization of Orally Bioavailable Enhancer of Zeste Homolog 2 (EZH2) Inhibitors Using Ligand and Property-Based Design Strategies: Identification of Development Candidate (R)-5,8-Dichloro-7-(methoxy(oxetan-3-yl)methyl)-2-((4-methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-3,4-dihydroisoquinolin-1(2H)-one (PF-06821497). J Med Chem. 2018;61:650–65.

    Article  CAS  PubMed  Google Scholar 

  43. Yamazaki S, Gukasyan HJ, Wang H, Uryu S, Sharma S. Translational Pharmacokinetic-Pharmacodynamic Modeling for an Orally Available Novel Inhibitor of Epigenetic Regulator Enhancer of Zeste Homolog 2 [published correction appears in J Pharmacol Exp Ther. 2020 Oct;375(1):238]. J Pharm Exp Ther. 2020;373:220–9.

    Article  CAS  Google Scholar 

  44. Zhang Y, Zhou L, Safran H, Borsuk R, Lulla R, Tapinos N, et al. EZH2i EPZ-6438 and HDACi vorinostat synergize with ONC201/TIC10 to activate integrated stress response, DR5, reduce H3K27 methylation, ClpX and promote apoptosis of multiple tumor types including DIPG. Neoplasia. 2021;23:792–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma L, Zhang X, Wang Z, Huang L, Meng F, Hu L, et al. Anti-cancer Effects of Curcumin on Myelodysplastic Syndrome through the Inhibition of Enhancer of Zeste Homolog-2 (EZH2). Curr Cancer Drug Targets. 2019;19:729–41.

    Article  CAS  PubMed  Google Scholar 

  46. Li Q, Liu KY, Liu Q, Wang G, Jiang W, Meng Q, et al. Antihistamine Drug Ebastine Inhibits Cancer Growth by Targeting Polycomb Group Protein EZH2. Mol Cancer Ther. 2020;19:2023–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang K, Sun R, Chen J, Yang Q, Wang Y, Zhang Y, et al. A novel EZH2 inhibitor induces synthetic lethality and apoptosis in PBRM1-deficient cancer cells. Cell Cycle. 2020;19:758–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Elkot HA, Ragab I, Saleh NM, Amin MN, Al-Rashood ST, El-Messery SM, et al. Design, synthesis, and antitumor activity of PLGA nanoparticles incorporating a discovered benzimidazole derivative as EZH2 inhibitor. Chem Biol Interact. 2021;344:109530.

    Article  CAS  PubMed  Google Scholar 

  49. Du D, Xu D, Zhu L, Stazi G, Zwergel C, Liu Y, et al. Structure-guided development of small-molecule PRC2 inhibitors targeting EZH2-EED interaction. J Med Chem. 2021;64:8194–207.

    Article  CAS  PubMed  Google Scholar 

  50. Bae WK, Yoo KH, Lee JS, Kim Y, Chung IJ, Park MH, et al. The methyltransferase EZH2 is not required for mammary cancer development, although high EZH2 and low H3K27me3 correlate with poor prognosis of ER-positive breast cancers. Mol Carcinog. 2015;54:1172–80.

    Article  CAS  PubMed  Google Scholar 

  51. Luo H, Jiang Y, Ma S, Chang H, Yi C, Cao H, et al. EZH2 promotes invasion and metastasis of laryngeal squamous cells carcinoma via epithelial-mesenchymal transition through H3K27me3. Biochem Biophys Res Commun. 2016;479:253–9.

    Article  CAS  PubMed  Google Scholar 

  52. Hanaki S, Shimada M. Targeting EZH2 as cancer therapy. J Biochem. 2021;170:1–4.

    Article  CAS  PubMed  Google Scholar 

  53. Chen H, Rossier C, Antonarakis SE. Cloning of a human homolog of the Drosophila enhancer of zeste gene (EZH2) that maps to chromosome 21q22.2. Genomics. 1996;38:30–37.

    Article  CAS  PubMed  Google Scholar 

  54. Chen H, Hang L, Yu J, et al. Research progress of histone methyltransferase EZH2 in common tumors. Med Recapitulate. 2021;27:2145–50.

    Google Scholar 

  55. Yap DB, Chu J, Berg T, Schapira M, Cheng SW, Moradian A, et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood. 2011;117:2451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McCabe MT, Graves AP, Ganji G, Diaz E, Halsey WS, Jiang Y, et al. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc Natl Acad Sci USA. 2012;109:2989–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Majer CR, Jin L, Scott MP, Knutson SK, Kuntz KW, Keilhack H, et al. A687V EZH2 is a gain-of-function mutation found in lymphoma patients. FEBS Lett. 2012;586:3448–51.

    Article  CAS  PubMed  Google Scholar 

  58. Deb G, Singh AK, Gupta S. EZH2: not EZHY (easy) to deal. Mol Cancer Res. 2014;12:639–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ezponda T, Licht JD. Molecular pathways: deregulation of histone h3 lysine 27 methylation in cancer-different paths, same destination. Clin Cancer Res. 2014;20:5001–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gu Z, Liu Y, Cai F, Patrick M, Zmajkovic J, Cao H, et al. Loss of EZH2 reprograms BCAA metabolism to drive leukemic transformation. Cancer Discov. 2019;9:1228–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hanaki S, Shimada M. Targeting EZH2 as cancer therapy. J Biochem. 2021;170:1–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.82204210), the Biological Medicine Joint Fund of Natural Science Foundation of Hebei Province (NO. H2022406062), the Funded by Science and Technology Project of Hebei Education Department (NO. QN2022161), the 2022 Research Start‐up Fund for High‐level Talents of Chengde Medical University (NO. 202207), and the Chengde Medical University basic research funds special project (NO. KY202315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Xia, Mt., Wang, Yd. et al. Structural classification of EZH2 inhibitors and prospects for the treatment of tumor: a review. Med Chem Res 32, 1589–1604 (2023). https://doi.org/10.1007/s00044-023-03105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03105-y

Keywords

Navigation