Skip to main content
Log in

Insights into the α-amylase and α-glucosidase inhibition mechanism of 4-(4-hydroxyphenyl)-but-3-en-2-one from Scutellaria barbata D. Don: enzymatic kinetics, fluorescence spectroscopy and computational simulation

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Diabetes mellitus has become a pandemic in modern society. Regulation of carbohydrate hydrolysis by inhibition of key-digestive enzymes is currently used to control hyperglycaemia. Therefore, characterization of safe and efficient alternative therapeutic agents has become essential. Herein, the mechanism of α-amylase and α-glucosidase inhibition of 4-(4-hydroxyphenyl)-but-3-en-2-one (4) isolated from Scutellaria barbata D. Don was investigated by in vitro enzymatic kinetics, conformation analysis and molecular docking. The results demonstrated that 4-(4-hydroxyphenyl)-but-3-en-2-one (4) reversibly inhibited α-amylase and α-glucosidase in a mixed-type and competitive manner with IC50 values of 81.2 ± 5.3 and 54.8 ± 2.4 µM, respectively. Analysis of fluorescence spectroscopy showed that the interaction of the compound with both enzymes was primarily influenced by hydrogen bonding and van der Waals forces, and was a spontaneous process. Moreover, computer modelling indicated that the amino acid residues of the enzymes were bound to the compound mainly by hydrogen bonds. The results indicated that the substituents in the molecular structure of the compounds play a crucial role in the inhibition activity of the compounds. 4-(4-Hydroxyphenyl)-but-3-en-2-one (4) with methyl vinyl ketone substitution on the benzene ring was the most potent inhibitor for both enzymes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The NMR and MS spectra of the compounds are available as supplementary material.

References

  1. Li X, Bai Y, Jin Z, Svensson B. Food-derived non-phenolic α-amylase and α-glucosidase inhibitors for controlling starch digestion rate and guiding diabetes-friendly recipes. LWT. 2022;153:112455. https://doi.org/10.1016/j.lwt.2021.112455.

    Article  CAS  Google Scholar 

  2. Perez Gutierrez RM. Antidiabetic andantioxidant properties, and α-amylase and α-glucosidase inhibition effects of triterpene saponins from Piper auritum. Food Sci Biotechnol. 2016;25:229–39. https://doi.org/10.1007/s10068-016-0034-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu Y, Deng J, Fan D. Ginsenoside Rk3 ameliorates high-fat-diet/streptozocin induced type 2 diabetes mellitus in mice via the AMPK/AKt signaling pathway. Food Funct. 2019;10:2538–51. https://doi.org/10.1039/C9FO00095J.

    Article  CAS  PubMed  Google Scholar 

  4. Lim J, Ferruzzi MG, Hamaker BR. Structural requirements of flavonoids for the selective inhibition of α-amylase versus α-glucosidase. Food Chem. 2022;370:130981. https://doi.org/10.1016/j.foodchem.2021.130981.

    Article  CAS  PubMed  Google Scholar 

  5. Kam A, Li KM, Razmovski‐Naumovski V, Nammi S, Shi J, Chan K. et al. A comparative study on the inhibitory effects of different parts and chemical constituents of pomegranate on α‐amylase and α‐glucosidase. Phytother Res. 2013;27:1614–20. https://doi.org/10.1002/ptr.4913.

    Article  PubMed  Google Scholar 

  6. Liang C, Kjaerulff L, Hansen PR, Kongstad KT, Staerk D. Dual high-resolution α-glucosidase and PTP1B inhibition profiling combined with HPLC-PDA-HRMS-SPE-NMR analysis for the identification of potentially antidiabetic chromene meroterpenoids from Rhododendron capitatum. J Nat Prod. 2021;84:2454–67. https://doi.org/10.1021/acs.jnatprod.1c00454.

    Article  CAS  PubMed  Google Scholar 

  7. Swamy MK. Plant-derived bioactives: Production, properties and therapeutic applications. Springer Nature Singapore Pte Ltd 2020. https://doi.org/10.1007/978-981-15-1761-7.

  8. Zhang X, Kong X, Hao Y, Zhang X, Zhu Z. Chemical structure and inhibition on α-glucosidase of polysaccharide with alkaline-extracted from Glycyrrhiza inflata residue. Int J Biol Macromol. 2020;147:1125–35. https://doi.org/10.1016/j.ijbiomac.2019.10.081.

    Article  CAS  PubMed  Google Scholar 

  9. Teng H, Chen L. Α-glucosidase and α-amylase inhibitors from seed oil: A review of liposoluble substance to treat diabetes. Crit Rev Food Sci Nutr. 2017;57:3438–48. https://doi.org/10.1080/10408398.2015.1129309.

    Article  CAS  PubMed  Google Scholar 

  10. Fitzgerald CN, Mora-Soler L, Gallagher E, O’Connor P, Prieto J, Soler-Vila A. et al. Isolation and characterization of bioactive pro-peptides with in vitro renin inhibitory activities from the Macroalga Palmaria palmata. J Agric Food Chem. 2012;60:7421–27. https://doi.org/10.1021/jf301361c.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang L, Fang Y, Feng JY, Cai QY, Wei LH, Lin S. et al. Chloroform fraction of Scutellaria barbata D. Don inhibits the growth of colorectal cancer cells by activating mir‑34a. Oncol Rep. 2017;37:3695–701. https://doi.org/10.3892/or.2017.5625.

    Article  CAS  PubMed  Google Scholar 

  12. Lee TK, Kim DI, Song YL, Lee YC, Kim HM, Kim CH. Differential inhibition of Scutellaria barbata D. Don (Lamiaceae) on HCG‐promoted proliferation of cultured uterine leiomyomal and myometrial smooth muscle cells. Immunopharmacol Immunotoxicol. 2004;26:329–42. https://doi.org/10.1081/IPH-200026841.

    Article  PubMed  Google Scholar 

  13. Wang L, Chen W, Li M, Zhang F, Chen K, Chen W. A review of the ethnopharmacology, phytochemistry, pharmacology, and quality control of Scutellaria barbata D. Don. J Ethnopharmacol. 2020;254:112260. https://doi.org/10.1016/j.jep.2019.112260.

    Article  CAS  PubMed  Google Scholar 

  14. Gao H, Kawabata J. 2-Aminoresorcinol is a potent α-glucosidase inhibitor. Bioorg Med Chem Lett. 2008;18:812–5. https://doi.org/10.1016/j.bmcl.2007.11.032.

    Article  CAS  PubMed  Google Scholar 

  15. Mohan S, Eskandari R, Pinto BM. Naturally occurring sulfonium-ion glucosidase inhibitors and their derivatives: A promising class of potential antidiabetic agents. Acc Chem Res. 2014;47:211–25. https://doi.org/10.1021/ar400132g.

    Article  CAS  PubMed  Google Scholar 

  16. Sim L, Quezada-Calvillo R, Sterchi EE, Nichols BL, Rose DR. Human intestinal maltase–glucoamylase: Crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J Mol Biol. 2008;375:782–92. https://doi.org/10.1016/j.jmb.2007.10.069.

    Article  CAS  PubMed  Google Scholar 

  17. Wang ZJ, Lee J, Si YX, Oh S, Yang JM, Shen D. et al. Toward the inhibitory effect of acetylsalicylic acid on tyrosinase: Integrating kinetics studies and computational simulations. Process Biochem. 2013;48:260–66. https://doi.org/10.1016/j.procbio.2012.12.019.

    Article  CAS  Google Scholar 

  18. He XF, Chen JJ, Li TZ, Hu J, Zhang XM, Geng CA. Diarylheptanoid-chalcone hybrids with PTP1B and α-glucosidase dual inhibition from alpinia katsumadai. Bioorg Chem. 2021;108:104683. https://doi.org/10.1016/j.bioorg.2021.104683.

    Article  CAS  PubMed  Google Scholar 

  19. Yang J, Wang X, Zhang C, Ma L, Wei T, Zhao Y, et al. Comparative study of inhibition mechanisms of structurally different flavonoid compounds on α-glucosidase and synergistic effect with acarbose. Food Chem. 2021;347:129056 https://doi.org/10.1016/j.foodchem.2021.129056

    Article  CAS  PubMed  Google Scholar 

  20. Li S, Hu X, Pan J, Gong D, Zhang G. Mechanistic insights into the inhibition of pancreatic lipase by apigenin: Inhibitory interaction, conformational change and molecular docking studies. J Mol Liq. 2021;335:116505. https://doi.org/10.1016/j.molliq.2021.116505.

    Article  CAS  Google Scholar 

  21. Samari F, Hemmateenejad B, Shamsipur M, Rashidi M, Samouei H. Affinity of two novel five-coordinated anticancer Pt (II) complexes to human and bovine serum albumins: A spectroscopic approach. Inorg Chem. 2012;51:3454–64. https://doi.org/10.1021/ic202141g.

    Article  CAS  PubMed  Google Scholar 

  22. Darwish SM, Abu shakh SE, Teir MMA, Makharza SA, Abu-hadid MM. Spectroscopic investigations of pentobarbital interaction with human serum albumin. J Mol Struct. 2010;963:122–9. https://doi.org/10.1016/j.molstruc.2009.10.023.

    Article  CAS  Google Scholar 

  23. Liu D, Cao X, Kong Y, Mu T, Liu J. Inhibitory mechanism of sinensetin on α-glucosidase and non-enzymatic glycation: Insights from spectroscopy and molecular docking analyses. Int J Biol Macromol. 2021;166:259–67. https://doi.org/10.1016/j.ijbiomac.2020.10.174.

    Article  CAS  PubMed  Google Scholar 

  24. Zeng N, Zhang G, Hu X, Pan J, Zhou Z, Gong D. Inhibition mechanism of baicalein and baicalin on xanthine oxidase and their synergistic effect with allopurinol. J Funct Foods. 2018;50:172–82. https://doi.org/10.1016/j.jff.2018.10.005.

    Article  CAS  Google Scholar 

  25. Zeng L, Zhang G, Lin S, Gong D. Inhibitory mechanism of apigenin on α-glucosidase and synergy analysis of flavonoids. J Agr Food Chem. 2016;64:6939–49. https://doi.org/10.1021/acs.jafc.6b02314.

    Article  CAS  Google Scholar 

  26. Wu XQ, Ding HF, Hu X, Pan JH, Liao YJ, Gong DM. et al. Exploring inhibitory mechanism of gallocatechin gallate on α-amylase and α-glucosidase relevant to postprandial hyperglycemia. J Funct Foods. 2018;48:200–9. https://doi.org/10.1016/j.jff.2018.07.022.

    Article  CAS  Google Scholar 

  27. Zhang G, Wang Y, Zhang H, Tang S, Tao W. Human serum albumin interaction with paraquat studied using spectroscopic methods. Pestic Biochem Phys. 2007;87:23–29. https://doi.org/10.1016/j.pestbp.2006.05.003.

    Article  CAS  Google Scholar 

  28. Li X, Wang G, Chen D, Lu Y. β-Carotene and astaxanthin with human and bovine serum albumins. Food Chem. 2015;179:213–21. https://doi.org/10.1016/j.foodchem.2015.01.133.

    Article  CAS  PubMed  Google Scholar 

  29. Liu JL, Kong YC, Miao JY, Mei XY, Wu SY, Yan YC. et al. Spectroscopy and molecular docking analysis reveal structural specificity of flavonoids in the inhibition of α-glucosidase activity. Int J Biol Macromol. 2020;152:981–89. https://doi.org/10.1016/j.ijbiomac.2019.10.184.

    Article  CAS  PubMed  Google Scholar 

  30. Noha SM, Schmidhammer H, Spetea M. Molecular docking, molecular dynamics, and structure–activity relationship explorations of 14-oxygenated N-methylmorphinan-6-ones as potent μ-opioid receptor agonists. ACS Chem Neurosci. 2017;8:1327–37. https://doi.org/10.1021/acschemneuro.6b00460.

    Article  CAS  PubMed  Google Scholar 

  31. Yabuta T, Hayashi M, Matsubara R. Photocatalytic reductive C–O bond cleavage of alkyl aryl ethers by using carbazole catalysts with cesium carbonate. J Org Chem. 2021;86:2545–55. https://doi.org/10.1021/acs.joc.0c02663.

    Article  CAS  PubMed  Google Scholar 

  32. Song ZQ, Wang DH. Palladium-catalyzed hydroxylation of aryl halides with boric acid. Org Lett. 2020;22:8470–74. https://doi.org/10.1021/acs.orglett.0c03069.

    Article  CAS  PubMed  Google Scholar 

  33. Jirasek P, Amslinger S. Synthesis of natural and non-natural curcuminoids and their neuroprotective activity against glutamate-induced oxidative stress in HT-22 cells. J Nat products. 2014;77:2206–17. https://doi.org/10.1021/np500396y.

    Article  CAS  Google Scholar 

  34. Waheed M, Ahmed N. Coumarin based novel ligands in the Suzuki–Miyaura and Mizoroki–Heck cross-couplings under aqueous medium. Tetrahedron Lett. 2016;57:3785–89. https://doi.org/10.1016/j.tetlet.2016.07.028.

    Article  CAS  Google Scholar 

  35. Kazmi MH, Malik A, Hameed S, Akhtar N, Ali SN. An anthraquinone derivative from Cassia italica. Phytochemistry . 1994;36:761–63. https://doi.org/10.1016/S0031-9422(00)89812-X.

    Article  CAS  Google Scholar 

  36. Chang MH, Wang GJ, Kuo YH, Lee CK. The low polar constituents from Bidens pilosa L. var. minor (Blume) Sherff. J Chin Chem Soc. 2000;47:1131–36. https://doi.org/10.1002/jccs.200000152.

    Article  CAS  Google Scholar 

  37. Rodríguez AD, Acosta AL. New cembranoid diterpenes and a geranylgeraniol derivative from the common Caribbean sea whip Eunicea succinea. J Nat Prod. 1997;60:1134–38. https://doi.org/10.1021/np970373m.

    Article  PubMed  Google Scholar 

  38. Chen PC, Dlamini BS, Chen CR, Kuo YH, Shih WL, Lin YS. et al. Structure related α-glucosidase inhibitory activity and molecular docking analyses of phenolic compounds from Paeonia suffruticosa. Med Chem Res. 2022;31:293–306. https://doi.org/10.1007/s00044-021-02830-6.

    Article  CAS  Google Scholar 

  39. Zeng L, Ding H, Hu X, Zhang G, Gong D. Galangin inhibits alpha-glucosidase activity and formation of non-enzymatic glycation products. Food Chem. 2019;271:70–79. https://doi.org/10.1016/j.foodchem.2018.07.148.

    Article  CAS  PubMed  Google Scholar 

  40. Su H, Ruan YT, Li Y, Chen JG, Yin ZP, Zhang QF. In vitro and in vivo inhibitory activity of taxifolin on three digestive enzymes. Int J Biol Macromol. 2020;150:31–37. https://doi.org/10.1016/j.ijbiomac.2020.02.027.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of Taiwan (Grants MOST 109-2320-B-020-001 and 109-2622-B-020-003). We acknowledge Ms Lih-Mei Sheu and Ms Shu-Chi Lin, Instrumentation Centre of the College of Science, National Chung Hsing University and National Tsing Hua University for MS measurements. The nuclear magnetic resonance spectrometer (NMR) was performed in the Precision Instruments Centre of National Pingtung University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-I Chang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dlamini, B.S., Chen, CR., Shih, WL. et al. Insights into the α-amylase and α-glucosidase inhibition mechanism of 4-(4-hydroxyphenyl)-but-3-en-2-one from Scutellaria barbata D. Don: enzymatic kinetics, fluorescence spectroscopy and computational simulation. Med Chem Res 31, 2007–2020 (2022). https://doi.org/10.1007/s00044-022-02966-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02966-z

Keywords

Navigation