Skip to main content
Log in

Antidiabetic andantioxidant properties, and α-amylase and α-glucosidase inhibition effects of triterpene saponins from Piper auritum

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Bioactivity-guided fractionation of methanol extracts from leaves of Piper auritum produced four triterpenoid saponin compounds 1-4. Structures were established based on interpretation of mass spectrometry (MS), nuclear magnetic resonance (NMR) data. 21-(p-methoxycinnamoyl)-olean-12-ene-28oic cid-3-O-α-L-arabinopyranosyl-(1→2)-β-D-glucopyranoside (1) and olean-12-ene-28 methyl ester-3-O-α-L-arabinofuranosyl-(1→2)-β-D-glucopyranoside (2) were orally administered to diabetic mice at dosage of 10 mg/kg of body weight per day for 30 days and resultant biochemical parameters were studied. Both compounds significantly (p<0.05) decreased serum glucose, total cholesterol, and triglyceride levels, compared with controls. Low density lipoprotein and high density lipoprotein cholesterol levels were ameliorated. The effects of lipid peroxidation and oxidative stress in the liver, pancreas, and kidney were reversed, with reductions insulin resistance and stimulation of insulin production. β-Glucosidase activities were studied in vitro. Compounds 1 and 2 can be used to improve glucose and lipid metabolism and to reduce the imbalance between generation of reactive oxygen species and scavenging enzyme activities for prevention of diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fufeng C, Xiong H, Wang J, Ding X, Shu G, Mei Z. Antidiabetic effect of total flavonoids from Sanguis draxonis in type 2 diabetic mice. J. Ethnopharmacol. 149: 729–736 (2013)

    Article  Google Scholar 

  2. Genet S, Kale RK. Baquer NZ. Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: Effect of vanadate and fenugreek (Trigonellafoenum graecum). Mol. Cell Biochem. 236: 7–12 (2002)

    Article  CAS  Google Scholar 

  3. McKenney JM. Pharmacotherapy of dyslipidemia. Cardiovasc. Drug. Ther. 15: 413–422 (2001)

    Article  CAS  Google Scholar 

  4. Malviya N, Jain S. Malvia S. Antidiabetic potential of medicinal plants. Acta Pol. Pharm. 6: 7113–7118 (2010)

    Google Scholar 

  5. Garcia A, Leyva M, Martinez J, Stashenko E. Determination of the composition chemical and antioxidant activity in vitro of essential oil of Piperauritum Kunth (Piperaceae). Sci. Tech. 33: 439–442 (2007)

    Google Scholar 

  6. Perez GRM, Cotera LFC, Neira GAN. Evaluation of the antioxidant and antiglycation effects of the hexane extract from Piper auritum leaves in vitro and beneficial activity on oxidative stress and advanced glycation endproductmediated renal injury in streptozotocin-treated diabetic mice. Molecule. 17: 11897–11919 (2012)

    Article  Google Scholar 

  7. Perez GRM. Effect of the hexane extract of Piper auritum on insulin release from β-cell and oxidative stress in streptozotocin-induced diabetic rat. Pharmacogn. Mag. 8: 308–313 (2012)

    Article  Google Scholar 

  8. Nolis P, Parella T. Spin-edited 2D HSQC-TOCSY experiments for the carbohydrates and peptides. J. Magn. Reson. 176: 15–26 (2005)

    Article  CAS  Google Scholar 

  9. Guide Laboratory Animals for the Care and Use of Laboratory Animals. 8th ed. National Academy of Sciences, Washington DC, USA (2011)

  10. Manual Organization of Ethics Committee in Research of the National School of Biological Sciences (CEI-ENCB) del IPN. (1999)

  11. Zhou J, Zhou S, Zeng S, Zhou J, Jiang M, He Y. Hypoglycemic and hypolipidemic effects of ethanolic extract of Mirabilis jalapa L. root on normal and diabetic mice. Evid-Based Compl. Alt. Article ID 257374 (2012)

    Google Scholar 

  12. Trinder P. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J. Clin. Pathol. 22: 158–161 (1969)

    Article  CAS  Google Scholar 

  13. Hashimoto S. A new spectrophotometric assay method of xanthine oxidase in crude tissue homogenate. Anal. Biochem. 62: 426–435 (1974)

    Article  CAS  Google Scholar 

  14. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 38: 1103–1111 (2005)

    Article  CAS  Google Scholar 

  15. Bradford MA. A rapid and sensitive method for the quantitation of microgram quantities of rotein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254 (1976)

    Article  CAS  Google Scholar 

  16. Fraga CG, Leibovitz BE, Tappel AL. Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: Characterization and comparison with homogenates and microsomes. Free Radical Bio. Med. 4: 155–161 (1998)

    Article  Google Scholar 

  17. Park SE, Cho MH, Lim JK, Kim JS, Kim JH, Kwon DY, Park CS. New colorimetric method for determining the isomerization activity of sucrose isomerase. Biosci. Biotech. Bioch. 71: 583–586 (2007)

    Article  CAS  Google Scholar 

  18. Tsujii E, Muroi M, Shiragami N. Nectrisine is a potent inhibitor of α-glucosidases, demonstrating activities similarly at enzyme and cellular levels. Biochem. Bioph. Res. Co. 220: 459–466 (1996)

    Article  CAS  Google Scholar 

  19. Conforti F, Statti G, Loizzo MR, Saccherti G, Poli F. In vitro antioxidant effect and inhibition α-amylase of two varieties of Amaranthus caudatus seeds. Biol. Pharm. Bull. 28: 1098–1102 (2005)

    Article  CAS  Google Scholar 

  20. Yu L, Haley S, Perret M, Harris J, Wilson J, Qian M. Free radical scavenging properties of wheat extracts. J. Agr. Food Chem. 50: 1619–1624 (2002)

    Article  CAS  Google Scholar 

  21. Balavoine GG, Geletii YV. Peroxynitrite scavenging by different antioxidants. Part I: Convenientassay. Nitric Oxide-Biol Ch. 3: 40–54 (1999)

    Article  CAS  Google Scholar 

  22. Karadag A, Ozcelik B, Saner S. Review of methods antioxidant capacities. Food Anal. Method. 2: 41–60 (2009)

    Article  Google Scholar 

  23. Re R., Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improvement ABTS radical cation decolourization assay. Free Radical Bio. Med. 26: 1232–1237 (1999)

    Article  Google Scholar 

  24. Cao G, Alessio HM, Cutler RG. Oxygen-radical absorbance capacity assay for antioxidant. Free Radical Bio. Med. 14: 303–311 (1993)

    Article  CAS  Google Scholar 

  25. Decker EA, Welch B. Role of ferritin as lipid oxidation catalyst in muscle food. J. Agr. Food Chem. 38: 674–677 (1990)

    Article  CAS  Google Scholar 

  26. Sreejayan N, Rao MNA. Free radical scavenging activity of curcuminoids. Drug Res. 46: 169–173 (1996)

    CAS  Google Scholar 

  27. Fenton R, Chemizmu DK. Fenton reaction-controversy concerning the chemistry. Ecol. Chem. Eng. 16: 347–358 (2009)

    Google Scholar 

  28. Ikuta A, Itokawa H. Triterpenoids Akebia quinata callus tisuue. Phytochemistr. 25: 1625–1628 (1986)

    Article  CAS  Google Scholar 

  29. Yoshikawa M, Murakami T, Yoshizumi S, Murakami N, Yamahara J Matsida H. Bioactive saponins and glycosides. V. acylated polyhydroxyolean-12-ene triterpene oligoglycosides, camellia saponins A1, A2, B1, B2, C1, and C2, from the seeds of Camellia japonica L.: Structures and inhibitory activity on alcohol absorption. Chem. Pharm. Bull. 44:1899–1890 (1996)

    Article  CAS  Google Scholar 

  30. Takedaa Y, Okada Y, Masuda TC. O-bisglycosylapigenins from the leaves of Rhumnella maequilotera. Phytochemistr. 65: 463–468 (2004)

    Article  Google Scholar 

  31. Qiao A, Wang Y, Xiang L, Zhang Z, He X. Triterpenoids of sour jujube show pronounced inhibitory effect on human tumor cells and antioxidant activity. Fitoterapi. 98: 137–142(2014)

    Article  CAS  Google Scholar 

  32. Zhang Z, Koike Z, Zhonghua J, Nikaido T, Guo D, Zheng J. New saponins from the seeds of Aesculus chinensis. Chem. Pharm. Bull. 47: 1515–1520 (1999)

    Article  CAS  Google Scholar 

  33. Sharma M, Siddique MW, Shamirn AM, Gyanesh S, Pillai KK. Evaluation of antidiabetic and antioxidant effects of seabuckthom (Hippophae rhamnoides L.) in streptozotocin-nicotinamide induced diabetic rats. Open Conf. Proc. J. 2: 53–58 (2011)

    Article  Google Scholar 

  34. Pepato MT, Migliorini RH, Goldberg A, Kettelhut IC. Role of different proteolytic pathways in degradation of muscle protein from streptozotocindiabetic rats. Am. J. Physiol. 1271: E340–E347 (1996)

    Google Scholar 

  35. Ravi K, Ramachandran B, Subrarnanian S. Effect of Eugenia jambolana seed kernel on antioxidant defense system in streptozotocin-induced diabetes mice. Life Sci. 75: 2717–2731 (2004)

    Article  CAS  Google Scholar 

  36. Maghrani, M, Zeggwagh NA, Lemhadri A. Study of the hyperglycemic activity of Fraxinus excelsior and Silybum marianum in an animal model of type 2 diabetes mellitus. J. Ethnopharmacol. 91: 309–316 (2004)

    Article  CAS  Google Scholar 

  37. Kim Y, Jeong Y, Wang M, Lee W, Rhee H. Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutritio. 21: 756–761 (2005)

    CAS  Google Scholar 

  38. Bolzan AD, Bianchi MS. Genotoxicity of streptozotocin. Mutat. Res. 512: 121–134 (2003)

    Article  Google Scholar 

  39. Yamaji Y, Nakazato Y, Oshirna N, Hayashi M, Saruta T. Oxidative stress induced by iron released from transferrin in low pH peritoneal dialysis solution. Nephrol. Dial. Transpl. 19: 2592–2597 (2004)

    Article  CAS  Google Scholar 

  40. Kehrer JP. The Haber-Weiss reaction and mechanisms of toxicity. Toxicolog. 149: 43–50 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Martha Perez Gutierrez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez Gutierrez, R.M. Antidiabetic andantioxidant properties, and α-amylase and α-glucosidase inhibition effects of triterpene saponins from Piper auritum . Food Sci Biotechnol 25, 229–239 (2016). https://doi.org/10.1007/s10068-016-0034-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0034-6

Keywords

Navigation