Skip to main content
Log in

Design, synthesis, and antidepressant/anticonvulsant activities of 3H-benzo[f]chromen chalcone derivatives

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In this study, 19 3H-benzo[f]chromen chalcone derivatives (2a2s) were obtained from 2-hydroxy-1-naphthaldehyde as the starting material, and their structures were confirmed by IR, 1H NMR, 13C NMR, and ESI-MS analyses. The antidepressant activities of the compounds were evaluated in mice after one 30 mg/kg dose by means of forced swimming tests, and 18 of the compounds (2a2l, 2n2s) showed antidepressant activity, of which three (2b, 2d, and 2n) showed strong antidepressant activity. Furthermore, all the compounds showed some anticonvulsant activity, with 11 of the compounds (2a2g, 2k, 2m, 2n, and 2q) inhibiting convulsions in the maximal electroshock seizure (MES) test after one dose of 100 mg/kg, and the other eight inhibiting convulsions in the MES after one dose of 300 mg/kg. In the tail suspension test, all the compounds did not show neurotoxicity at the same dose. This research provides an experimental theoretical basis for finding new antidepressants with high biological activity and few side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  1. Zhang J, Huen JMY, Lew B, Chistopolskaya K, Talib MA, Siau CS. et al. Depression, anxiety, and stress as a function of psychological strains: towards an etiological theory of mood disorders and psychopathologies. J Affect Disord. 2020;271:279–85. https://doi.org/10.1016/j.jad.2020.03.076.

    Article  PubMed  Google Scholar 

  2. Hijne K, Penninx BW, van Hemert AM, Spinhoven P. The association of changes in repetitive negative thinking with changes in depression and anxiety. J Affect Disord. 2020;275:157–64. https://doi.org/10.1016/j.jad.2020.07.002.

    Article  PubMed  Google Scholar 

  3. Liu Q, He H, Yang J, Feng X, Zhao F, Lyu J. Changes in the global burden of depression from 1990 to 2017: Findings from the Global Burden of Disease study. J Psychiatr Res. 2019;126:134–40. https://doi.org/10.1016/j.jpsychires.2019.08.002.

    Article  PubMed  Google Scholar 

  4. Coppen A, Shaw DM, Malleson A. Changes in 5-hydroxytryptophan metabolism in depression. Br J Psychiatry. 1965;111:105–107. https://doi.org/10.1192/bjp.111.470.105.

    Article  CAS  PubMed  Google Scholar 

  5. Janowsky DS, El-Yousef MK, Davis JM, Sekerke HJ. A cholinergic-ad-renergic hypothesis of mania and depression. Lancet. 1972;300:632–5. https://doi.org/10.1016/s0140-6736(72)93021-8.

    Article  Google Scholar 

  6. Ménard C, Hodes GE, Russo SJ. Pathogenesis of depression: Insights from human and rodent studies. Neuroscience. 2016;321:138–62. https://doi.org/10.1016/j.neuroscience.2015.05.053.

    Article  CAS  Google Scholar 

  7. Lee STH. Inflammation, depression, and anxiety disorder: A population-based study examining the association between Interleukin-6 and the experiencing of depressive and anxiety symptoms. Psychiatry Res. 2020;285:112809. https://doi.org/10.1016/j.psychres.2020.112809.

    Article  CAS  PubMed  Google Scholar 

  8. Liu T, Zhou N, Xu R, Cao Y, Zhang Y, Liu Z. et al. A metabolomic study on the anti-depressive effects of two active components from Chrysanthemum morifolium. Artif Cells Nanomed Biotechnol. 2020;48:718–27. https://doi.org/10.1080/21691401.2020.1774597.

    Article  CAS  PubMed  Google Scholar 

  9. Tan S, Wang Y, Chen K, Long Z, Zou J. Ketamine alleviates depressive-like behaviors via down-regulating inflammatory cytokines induced by chronic restraint stress in mice. Biol Pharm Bull. 2017;40:1260–1267. https://doi.org/10.1248/bpb.b17-00131.

    Article  CAS  PubMed  Google Scholar 

  10. Gao W, Wang W, Peng Y, Deng Z. Antidepressive effects of kaempferol mediated by reduction of oxidative stress, proinflammatory cytokines and up-regulation of AKT/β-catenin cascade. Metab Brain Dis. 2019;34:485–94. https://doi.org/10.1007/s11011-019-0389-5.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang YQ, Wang XB, Xue RR, Gao XX, Li W. Ginsenoside Rg1 attenuates chronic unpredictable mild stress-induced depressive-like effect via regulating NF-κB/NLRP3 pathway in rats. Neuroreport. 2019;30:893–900. https://doi.org/10.1097/WNR.0000000000001302.

    Article  CAS  PubMed  Google Scholar 

  12. Ferraz CAA, de Oliveira Júnior RG, Picot L, da Silva Almeida JRG, Nunes XP, Nunes XP. Pre-clinical investigations of β-carboline alkaloids as antidepressant agents: a systematic review. Fitoterapia. 2019;137:104196. https://doi.org/10.1016/j.fitote.2019.104196.

    Article  CAS  PubMed  Google Scholar 

  13. Forthoffer N, Kleitz C, Bilger M, Brissart H. Depression could modulate neuropsychological status in epilepsy. Rev Neurol. 2020;176:456–67. https://doi.org/10.1016/j.neurol.2020.03.015.

    Article  CAS  PubMed  Google Scholar 

  14. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7:31–40. https://doi.org/10.1038/nrneurol.2010.178.

    Article  CAS  PubMed  Google Scholar 

  15. Yamatogi Y. Principles of antiepileptic drug treatment of epilepsy. Psychiatry Clin Neurosci. 2004;58:S3–6. https://doi.org/10.1111/j.1440-1819.2004.01244_1.x.

    Article  PubMed  Google Scholar 

  16. Stefan H, Feuerstein TJ. Novel anticonvulsant drugs. Pharm Ther. 2007;113:165–183. https://doi.org/10.1016/j.pharmthera.2006.07.005.

    Article  CAS  Google Scholar 

  17. Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chalcone: a privileged structure in medicinal chemistry. Chem Rev. 2017;117:7762–810. https://doi.org/10.1021/acs.chemrev.7b00020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Szliszka E, Czuba ZP, Mazur B, Paradysz A, Krol W. Chalcones and dihydrochalcones augment TRAIL-mediated apoptosis in prostate cancer cells. Molecules. 2010;15:5336–53. https://doi.org/10.3390/molecules15085336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aoki N, Muko M, Ohta E, Ohta S. C-geranylated chalcones from the stems of Angelica keiskei with superoxide-scavenging activity. J Nat Prod. 2008;71:1308–10. https://doi.org/10.1021/np800187f.

    Article  CAS  PubMed  Google Scholar 

  20. Sivakumar PM, Ganesan S, Veluchamy P, Doble M. Novel chalcones and 1,3,5-triphenyl-2-pyrazoline derivatives as antibacterial agents. Chem Biol Drug Des. 2010;76:407–11. https://doi.org/10.1111/j.1747-0285.2010.01020.x.

    Article  CAS  PubMed  Google Scholar 

  21. de Mello MVP, Abrahim-Vieira BA, Domingos TFS, de Jesus JB, de Sousa ACC, Rodrigues CR. et al. A comprehensive review of chalcone derivatives as antileishmanial agents. Eur J Med Chem. 2018;150:920–9. https://doi.org/10.1016/j.ejmech.2018.03.047.

    Article  CAS  PubMed  Google Scholar 

  22. Tadigoppula N, Korthikunta V, Gupta S, Kancharla P, Khaliq T, Soni A. et al. Synthesis and insight into the structure-activity relationships of chalcones as antimalarial agents. J Med Chem. 2013;56:31–45. https://doi.org/10.1021/jm300588j.

    Article  CAS  PubMed  Google Scholar 

  23. Mojzis J, Varinska L, Mojzisova G, Kostova I, Mirossay L. Antiangiogenic effects of flavonoids and chalcones. Pharm Res. 2008;57:259–65. https://doi.org/10.1016/j.phrs.2008.02.005.

    Article  CAS  Google Scholar 

  24. Gomes MN, Braga RC, Grzelak EM, Neves BJ, Muratov E, Ma R. et al. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. Eur J Med Chem. 2017;137:126–38. https://doi.org/10.1016/j.ejmech.2017.05.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guan LP, Zhao DH, Chang Y, Sun Y, Ding XL, Jiang JF. Design, synthesis and antidepressant activity evaluation 2’-hydroxy-4’,6’-diisoprenyloxychalcone derivatives. Med Chem Res. 2013;22:5218–26. https://doi.org/10.1007/s00044-013-0517-4.

    Article  CAS  Google Scholar 

  26. Yamamoto T, Yoshimura M, Yamaguchi F, Kouchi T, Tsuji R, Saito M. et al. Anti-allergic Activity of Naringenin Chalcone from a Tomato Skin Extract. Biosci Biotechnol Biochem. 2004;68:1706–11. https://doi.org/10.1271/bbb.68.1706.

    Article  CAS  PubMed  Google Scholar 

  27. Birari RB, Gupta S, Mohan CG, Bhutani KK. Antiobesity and lipid lowering effects of Glycyrrhiza chalcones: experimental and computational studies. Phytomedicine. 2011;18:795–801. https://doi.org/10.1016/j.phymed.2011.01.002.

    Article  CAS  PubMed  Google Scholar 

  28. Sato Y, He JX, Nagai H, Tani T, Akao T. Isoliquiritigenin, one of the antispasmodic principles of Glycyrrhiza ularensis roots, acts in the lower part of intestine. Biol Pharm Bull. 2007;30:145–9. https://doi.org/10.1248/bpb.30.145.

    Article  CAS  PubMed  Google Scholar 

  29. Nowakowska Z. A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem. 2007;42:125–37. https://doi.org/10.1016/j.ejmech.2006.09.019.

    Article  CAS  PubMed  Google Scholar 

  30. Wang W, Hu X, Zhao Z, Liu P, Hu Y, Zhou J. et al. Antidepressant-like effects of liquiritin and isoliquiritin from Glycyrrhiza uralensis in the forced swimming test and tail suspension test in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1179–1184. https://doi.org/10.1016/j.pnpbp.2007.12.021.

    Article  CAS  PubMed  Google Scholar 

  31. Sahu NK, Balbhadra SS, Choudhary J, Kohli DV. Exploring pharmacological significance of chalcone scaffold: a review. Curr Med Chem. 2012;19:209–25. https://doi.org/10.2174/092986712803414132.

    Article  CAS  PubMed  Google Scholar 

  32. Singh P, Anand A, Kumar V. Recent developments in biological activities of chalcones: a mini review. Eur J Med Chem. 2014;85:758–77. https://doi.org/10.1016/j.ejmech.2014.08.033.

    Article  CAS  PubMed  Google Scholar 

  33. Sinha S, Medhi B, Sehgal R. Challenges of drug-resistant malaria. Parasite. 2014;21:61. https://doi.org/10.1051/parasite/2014059.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Matos MJ, Vazquez-Rodriguez S, Uriarte E, Santana L. Potential pharmacological uses of chalcones: a patent review (from June 2011 - 2014). Expert Opin Ther Pat. 2015;25:351–66. https://doi.org/10.1517/13543776.2014.995627.

    Article  CAS  PubMed  Google Scholar 

  35. Mohan M, Attarde D, Momin R, Kasture S. Antidepressant, anxiolytic and adaptogenic activity of torvanol A: an isoflavonoid from seeds of Solanum torvum. Nat Prod Res. 2013;27:2140–3. https://doi.org/10.1080/14786419.2013.778853.

    Article  CAS  PubMed  Google Scholar 

  36. Yan L, Hu Q, Mak MS, Lou J, Xu SL, Bi CW. et al. A Chinese herbal decoction, reformulated from Kai-Xin-San, relieves the depression-like symptoms in stressed rats and induces neurogenesis in cultured neurons. Sci Rep.2016;6:30014. https://doi.org/10.1038/srep30014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu P, Mamiya T, Lu L, Mouri A, Niwa M, Kim HC. et al. Silibinin attenuates cognitive deficits and decreases of dopamine and serotonin induced by repeated methamphetamine treatment. Behav Brain Res. 2010;207:387–393. https://doi.org/10.1016/j.bbr.2009.10.024.

    Article  CAS  PubMed  Google Scholar 

  38. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16:22–34. https://doi.org/10.1038/nri.2015.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Costa M, Dias TA, Brito A, Proença F. Biological importance of structurally diversified chromenes. Eur J Med Chem. 2016;123:487–507. https://doi.org/10.1016/j.ejmech.2016.07.057.

    Article  CAS  PubMed  Google Scholar 

  40. Chen Y, Kong LD, Xia X, Kung HF, Zhang L. Behavioral and biochemical studies of total furocoumarins from seeds of Psoralea corylifolia in the forced swimming test in mice. J Ethnopharmacol. 2005;96:451–9. https://doi.org/10.1016/j.jep.2004.09.033.

    Article  CAS  PubMed  Google Scholar 

  41. Ariza SY, Rueda DC, Javier RV, Linares EL, Guerrero MF. Pharmacological effects on the central nervous system induced by coumarin, isolated from hygrophila tyttha leonard. Vitae. 2007;14:51–8. https://doi.org/10.1590/S0121-40042007000200007.

    Article  CAS  Google Scholar 

  42. Vergel NE, López JL, Orallo F, Viña D, Buitrago DM, del Olmo E. et al. Antidepressant-like profile and MAO-A inhibitory activity of 4-propyl-2H-benzo[h]-chromen-2-one. Life Sci. 2010;86:819–24. https://doi.org/10.1016/j.lfs.2010.04.001.

    Article  CAS  PubMed  Google Scholar 

  43. Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther. 1977;229:327–36.

    CAS  PubMed  Google Scholar 

  44. Jin HG, Zhou M, Jin QH, Liu BY, Guan LP. Antidepressant-like effects of saringosterol, a sterol from Sargassum fusiforme by performing in vivo behavioral tests. Med Chem Res. 2017;26:909–15. https://doi.org/10.1007/s00044-017-1804-2.

    Article  CAS  Google Scholar 

  45. Zhang XW, Zhao DH, Quan YC, Sun L, Yin XM, Guan LP. Synthesis and evaluation of antiinflammatory activity of substituted chalcone derivatives. Med Chem Res. 2009;19:403–12. https://doi.org/10.1007/s00044-009-9202-z.

    Article  CAS  Google Scholar 

  46. Zhao LM, Jin HS, Sun LP, Piao HR, Quan ZS. Synthesis and evaluation of antiplatelet activity of trihydroxychalcone derivatives. Bioorg Med Chem Lett. 2005;15:5027–9. https://doi.org/10.1016/j.bmcl.2005.08.039.

    Article  CAS  PubMed  Google Scholar 

  47. Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology. 1985;85:367–70. https://doi.org/10.1007/bf00428203.

    Article  CAS  PubMed  Google Scholar 

  48. Klein BD, Jacobson CA, Metcalf CS, Smith MD, Wilcox KS, Hampson AJ. et al. Evaluation of Cannabidiol in Animal Seizure Models by the Epilepsy Therapy Screening Program (ETSP). Neurochem Res. 2017;42:1939–48. https://doi.org/10.1007/s11064-017-2287-8.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang L, Guan LP, Sun XY, Wei CX, Chai KY, Quan ZS. Synthesis and anticonvulsant activity of 6-alkoxy-[1,2,4]triazolo[3,4-a]phthalazines. Chem Biol Drug Des. 2009;73:313–9. https://doi.org/10.1111/j.1747-0285.2009.00776.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Zhejiang Province Public Technology Application Project of China (No. 2017C33131). We thank Arshad Makhdum, PhD, from LiwenBianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ping Guan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, QW., He, LY., He, ZW. et al. Design, synthesis, and antidepressant/anticonvulsant activities of 3H-benzo[f]chromen chalcone derivatives. Med Chem Res 30, 1427–1437 (2021). https://doi.org/10.1007/s00044-021-02742-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02742-5

Navigation