Skip to main content

Advertisement

Log in

Activation and inhibition effects of some natural products on human cytosolic CAI and CAII

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Carbonic anhydrases (CAs) play a significant function in diverse pathological and physiological processes. Their inhibitors and activators are suitable molecules to use as a drug in the treatment of different disease. In the present study, seven natural compounds, namely didymin, retusin isoquercitrin, silymarin, verbascoside, teucroside, and 3′-O-methylhypolaetin 7-O-[6′′′-O-acetyl-β-D-allopyranosyl-(1→2)]-6′′-O-acetyl-β-D-glucopyranoside were isolated from Mentha spicata, Sideritis libanotica linearis, Platanus orientalis, Teucrium chamaedrys subsp. chamaedrys, and Silybum marianum. The influences of compounds on the carbonic anhydrase I(hCAI) and II(hCAII) purified from human erythrocytes were tested. Five phenolic compounds acted as an inhibitor on the activity of hCAI, and IC50 values were computed between 18.16 and 172.5 μM. Isozyme hCAII is only inhibited by silymarin with an IC50 value of 43.12 μM. This isoenzyme was effectively activated by five natural compounds with AC50 values in the range of 2.98–18.53 μM. To understand the binding patterns of molecules that show activation effect against hCAII, molecular docking was done using Leadit 2.3.2 software, and calculated between −19.05 and −14.42 (kJ/mol) binding energies. Both in vitro and in silico results demonstrated that the best activators against hCAII were teucroside and isoquercitrin, with AC50 values of 2.98 and 3.17 μM, and binding energies −19.05 and −18.01 (kJ/mol), respectively. According to the ADME results, retusin demonstrated physicochemical and pharmacokinetic properties specific to the drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adem S, Aslan A, Ahmed I, Krohn K, Guler C, Comakli V, Demirdag R, Kuzu M (2016) Inhibitory and activating effects of some flavonoid derivatives on human pyruvate kinase isoenzyme M2. Arch Pharm 349:132–136

    Article  CAS  Google Scholar 

  • Afshar RK, Chaichi MR, Jovini MA, Jahanzad E, Hashemi M (2015) Accumulation of silymarin in milk thistle seeds under drought stress. Planta 242:539–543

    Article  CAS  Google Scholar 

  • Alterio V, Di Fiore A, D’ambrosio K, Supuran CT, De Simone G (2012) Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 112:4421–4468

    Article  CAS  PubMed  Google Scholar 

  • Alyar S, Adem Ş (2014) Synthesis, characterization, antimicrobial activity and carbonic anhydrase enzyme inhibitor effects of salicilaldehyde-N-methyl p-toluenesulfonylhydrazone and its Palladium(II), Cobalt(II) complexes. Spectrochim Acta, Part A 131:294–302

    Article  CAS  Google Scholar 

  • Aslan E, Adem S (2015) Investigation of the effects of some drugs and phenolic compounds on human dihydrofolate reductase activity. J Biochem Mol Toxicol 29:135–139

    Article  CAS  PubMed  Google Scholar 

  • Bertucci A, Zoccola D, Tambutté S, Vullo D, Supuran CT (2010) Carbonic anhydrase activators. The first activation study of a coral secretory isoform with amino acids and amines. Bioorgan Med Chem 18:2300–2303

    Article  CAS  Google Scholar 

  • Bhatt A, Mondal UK, Supuran CT, Ilies MA, Mckenna R (2018) Crystal structure of carbonic anhydrase II in complex with an activating ligand: implications in neuronal function. Mol Neurobiol 55:1–7

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cazarolli LH, Zanatta L, Alberton EH, Figueiredo MS, Folador P, Damazio RG, Pizzolatti MG, Silva FR (2008) Flavonoids: prospective drug candidates. Mini Rev Med Chem 8:1429–1440

    Article  CAS  PubMed  Google Scholar 

  • Cirmi S, Ferlazzo N, Lombardo GE, Maugeri A, Calapai G, Gangemi S, Navarra M (2016) Chemopreventive agents and inhibitors of cancer hallmarks: may Citrus offer new perspectives? Nutrients 8:698

    Article  CAS  PubMed Central  Google Scholar 

  • Cui Q, Pan Y, Zhang W, Zhang Y, Ren S, Wang D, Wang Z, Liu X, Xiao W (2018) Metabolites of dietary acteoside: profiles, isolation, identification, and hepatoprotective capacities. J Agr Food Chem 66:2660–2668

    Article  CAS  Google Scholar 

  • Dalia Almahdy TSE-A, El-Gohary HMA, Sokkar NM, Sleem AA (2008) Phenolic constituents of Platanus orientalis L. Leaves. Nat Prod Commun 3:199–203

    Google Scholar 

  • Davis RA, Hofmann A, Osman A, Hall RA, Mühlschlegel FA, Vullo D, Innocenti A, Supuran CT, Poulsen SA (2011) Natural product-based phenols as novel probes for mycobacterial and fungal carbonic anhydrases. J Med Chem 54:1682–1692

    Article  CAS  PubMed  Google Scholar 

  • Davis RA, Vullo D, Maresca A, Supuran CT, Poulsen SA (2013) Natural product coumarins that inhibit human carbonic anhydrases. Bioorgan Med Chem 21:1539–1543

    Article  CAS  Google Scholar 

  • Demirtas I, Ayhan B, Sahin A, Aksit H, Elmastas M, Telci I (2011) Antioxidant activity and chemical composition of Sideritis libanotica Labill. ssp. linearis (Bentham) Borm. (Lamiaceae). Nat Prod Res 25:1512–1523

    Article  CAS  PubMed  Google Scholar 

  • Demirtas I, Sahin A, Ayhan B, Tekin S, Telci I (2009) Antiproliferative effects of the methanolic extracts of Sideritis libanotica Labill. subsp. linearis. Rec Nat Prod 3:104

    CAS  Google Scholar 

  • Dykes L, Rooney L (2007) Phenolic compounds in cereal grains and their health benefits. Cereal Foods World 52:105–111

    CAS  Google Scholar 

  • Elmastas M, Erenler R, Isnac B, Aksit H, Sen O, Genc N, Demirtas I (2016) Isolation and identification of a new neo-clerodane diterpenoid from Teucrium chamaedrys L. Nat Prod Res 30:299–304

    Article  CAS  PubMed  Google Scholar 

  • Gilmour KM (2010) Perspectives on carbonic anhydrase. Comp Biochem Physiol A Mol Integr Physiol 157:193–197

    Article  CAS  PubMed  Google Scholar 

  • Gülçin I, Beydemir Ş, Büyükokuroǧlu ME (2004) In vitro and in vivo effects of dantrolene on carbonic anhydrase enzyme activities. Biol Pharm Bull 27:613–616

    Article  PubMed  Google Scholar 

  • Hsu YL, Hsieh CJ, Tsai EM, Hung JY, Chang WA, Hou MF, Kuo PL (2016) Didymin reverses phthalate ester-associated breast cancer aggravation in the breast cancer tumor microenvironment. Oncol Lett 11:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Innocenti A, Gülçin I, Scozzafava A, Supuran CT (2010) Carbonic anhydrase inhibitors. Antioxidant polyphenols effectively inhibit mammalian isoforms I-XV. Bioorg Med Chem Lett 20:5050–5053

    Article  CAS  PubMed  Google Scholar 

  • Javed S, Kohli K, Ali M (2011) Reassessing bioavailability of silymarin. Altern Med Rev 16:239

    PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq M, Wani SM (2013) Polyphenols and human health—A review. Int J Pharma Bio Sci 4:B338–B360

    Google Scholar 

  • Öztürk Sarikaya SB, Gülçin I, Supuran CT (2010) Carbonic anhydrase inhibitors: inhibition of human erythrocyte isozymes i and ii with a series of phenolic acids. Chem Biol Drug Des 75:515–520

    Article  CAS  Google Scholar 

  • Ravishankar D, Rajora AK, Greco F, Osborn HMI (2013) Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol 45:2821–2831

    Article  CAS  PubMed  Google Scholar 

  • Scozzafava A, Mastrolorenzo A, Supuran CT (2006) Carbonic anhydrase inhibitors and activators and their use in therapy. Expert Opin Ther Pat 16:1627–1664

    Article  CAS  Google Scholar 

  • Senturk M, Gulcin I, Beydemir S, Kufrevioglu OI, Supuran CT (2011) In vitro inhibition of human carbonic anhydrase I and II isozymes with natural phenolic compounds. Chem Biol Drug Des 77:494–499

    Article  CAS  PubMed  Google Scholar 

  • Singhal SS, Singhal S, Singhal P, Singhal J, Horne D, Awasthi S (2017) Didymin: an orally active citrus flavonoid for targeting neuroblastoma. Oncotarget 8:29428

    PubMed  PubMed Central  Google Scholar 

  • Sly WS, Hu PY (1995) Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem 64:375–401

    Article  CAS  PubMed  Google Scholar 

  • Sun MK, Alkon DL (2002) Carbonic anhydrase gating of attention: memory therapy and enhancement. Trends Pharmacol Sci 23:83–89

    Article  CAS  PubMed  Google Scholar 

  • Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7:168–181

    Article  CAS  PubMed  Google Scholar 

  • Supuran CT (2010) Carbonic anhydrase inhibitors. Bioorg Med Chem Lett 20:3467–3474

    Article  CAS  PubMed  Google Scholar 

  • Supuran CT, Scozzafava A (2007) Carbonic anhydrases as targets for medicinal chemistry. Bioorg Med Chem 15:4336–4350

    Article  CAS  PubMed  Google Scholar 

  • Telci I, Demirtas I, Bayram E, Arabaci O, Kacar O (2010) Environmental variation on aroma components of pulegone/piperitone rich spearmint (Mentha spicata L.). Ind Crops Prod 32:588–592

    Article  CAS  Google Scholar 

  • Valentová K, Vrba J, Bancířová M, Ulrichová J, Křen V (2014) Isoquercitrin: pharmacology, toxicology, and metabolism. Food Chem Toxicol 68:267–282

    Article  CAS  PubMed  Google Scholar 

  • Van De Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2:192

    Article  PubMed  Google Scholar 

  • Wen Y, Huo S, Zhang W, Xing H, Qi L, Zhao D, Li N, Xu J, Yan M, Chen X (2016) Pharmacokinetics, biodistribution, excretion and plasma protein binding studies of acteoside in rats. Drug Res 66:148–153

    CAS  Google Scholar 

  • Wilbur KM, Anderson NG (1948) Electrometric and colorimetric determination of carbonic anhydrase. J Biol Chem 176:147–154

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevki Adem.

Ethics declarations

Conflict of interest

This research was financed Cankiri Karatekin University (Project No: BAP 2012-13).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adem, S., Akkemik, E., Aksit, H. et al. Activation and inhibition effects of some natural products on human cytosolic CAI and CAII. Med Chem Res 28, 711–722 (2019). https://doi.org/10.1007/s00044-019-02329-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-019-02329-1

Keywords

Navigation