Skip to main content

Advertisement

Log in

Novel derivatives of substituted 6-fluorobenzothiazole diamides: synthesis, antifungal activity and cytotoxicity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A new series of 1-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-3-substituted phenyl diamides were synthesized in vitro as potential antifungal agents. Chemical structures of the synthesised compounds were substantiated by IR, 1H, 13C, 19F nuclear magnetic resonance spectra, high resolution mass spectrometry, elemental analysis and also by X-ray diffraction. In addition, the cytotoxicity of the most active compounds was investigated against cancer cell line (Jurkat) and one type of normal lung fibroblast cells (MRC-5) by (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) tetrazolium salt reduction assay, propidium iodide flow cytometry assay and xCELLigence system allowing a label-free assessment of the cells proliferation. Compounds indicated as 11e, 11g, 11j, 11n and 11o, were the best of the series, showing minimum inhibitory concentration values of 6.25–50 μg/mL against pathogenic strains Candida albicans HE 169, Candida tropicalis 31/HK and Candida parapsilosis p69. Moreover compounds 11e, 11g, 11j and 11o did not show any cytotoxic effect against human Jurkat and MRC-5 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed FR, Hall SR, Huber CP (1970) Crystallographic computing. Munksgaard, Copenhagen

    Google Scholar 

  • Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylo R (1987) Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J Chem Soc Perkin Trans 2:S1–S19

    Article  Google Scholar 

  • Altomare A, Cascarano G, Giacovazzo C, Guagliardi A (1993) Completion and refinement of crystal structures with SIR92. J Appl Crystallogr 26:343–350

    Article  Google Scholar 

  • Amnerkar ND, Bhusari KP (2011) Synthesis of some thiazolyl aminobenzothiazole derivatives as potential antibacterial, antifungal and anthelmintic agents. J Enzyme Inhib Med Chem 26:22–28

    Article  CAS  PubMed  Google Scholar 

  • Bondock S, Fadaly W, Metwally MA (2010) Synthesis and antimicrobial activity of some new thiazole, thiophene and pyrazole derivatives containing benzothiazole moiety. Eur J Med Chem 45:3692–3701

    Article  CAS  PubMed  Google Scholar 

  • Brandenburg KL, Heeg MJ, Abrahamson HB (1987) Preparation and reactivity of tricarbonyl(g.5-cyclopentadienyl)(organothiolato)-tungsten complexes with potentially chelating thiolate ligands. Inorg Chem 26:1064–1069

    Article  CAS  Google Scholar 

  • Bujdakova H, Kuchta T, Sidoova E, Gvozdjakova A (1993) Anti-Candida activity of four antifungal benzothiazoles. FEMS Microbiol Lett 112:329–334

    Article  CAS  PubMed  Google Scholar 

  • Bujdakova H, Muckova M (1994) Antifungal activity of a new benzothiazole derivative against Candida in vitro and in vivo. Int J Antimicrob Agents 4:303–308

    Article  CAS  PubMed  Google Scholar 

  • CLSI (2012) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard, 9th edn., CLSI document M07-A9. Clinical and Laboratory Standards Institute, Wayne

  • Diekema D, Arbefeville S, Boyken L, Kroeger J, Pfaller M (2012) The changing epidemiology of healthcare-associated candidemia over three decades. Microbiol Infect Dis 73:45–48

    Article  Google Scholar 

  • Havelek R, Siman P, Cmielova J, Stoklasova A, Vavrova J, Vinklarek J, Knizek J, Rezacova M (2012) Differences in vanadocene dichloride and cisplatin effect on MOLT-4 leukemia and human peripheral blood mononuclear cells. Med Chem 8:615–621

    Article  PubMed  Google Scholar 

  • Imramovsky A, Pejchal V, Stepankova S, Vorcakova K, Jampilek J, Vanco J, Simunek P, Kralovec K, Bruckova L, Mandı´kova J, Trejtnar F (2013) Synthesis and in vitro evaluation of new derivatives of 2-substituted 6-fluorobenzo[d]thiazoles as cholinesterase inhibitors. Bioorg Med Chem 21:1735–1748

    Article  CAS  PubMed  Google Scholar 

  • Karagiannidis LE, Gale PA, Light ME, Massi M, Ogden MI (2011) Further insight into the coordination of 2,5-dicarbothioamidopyrroles: the case of Cu and Co complexes. Dalton Trans 40:12097–12105

    Article  CAS  PubMed  Google Scholar 

  • Kello E, Kettman V, Miertus S, Vrabel V, Konecny V (1986) The crystal and electron structure of 3-benzylbenzothiazolium bromide. Collect Czech Chem Commun 51:1864–1873

    Article  CAS  Google Scholar 

  • Leone-Bay A, McInnes C, Wang NF, DeMorin F, Achan D, Lercara Ch, Sarubbi D, Haas S, Press J (1995) Microsphere formation in a series of derivatized.alpha.-amino acids: properties, molecular modeling, and oral delivery of salmon calcitonin. J Med Chem 38:4257–4262

    Article  CAS  PubMed  Google Scholar 

  • Lion CJ, Matthews CS, Wells G, Bradshaw TD, Stevens MFG, Westwell AD (2006) Antitumour properties of fluorinated benzothiazole-substituted hydroxycyclohexa-2,5-dienones (‘quinols’). Bioorg Med Chem Lett 16:5005–5008

    Article  CAS  PubMed  Google Scholar 

  • Menges M, Hamprecht G, Menke O, Reinhard R, Schafer P, Zagar C, Westphalen KO, Otten M, Walter H (1999) Substituted 2-(Benzoyl)pyridines. WO patent 1999-9906394, filled June 23, 1998, issued Feb 11, 1999

  • Mittal S, Samottra MK, Kaur J, Seth G (2007) Synthesis, spectral, and antifungal evaluation of phosphorylated and thiophosphorylated benzothiazole derivatives. Phosphorus Sulfur Silicon Relat Elem 182:2105–2113

    Article  CAS  Google Scholar 

  • Nagarajan SR, De Crescenzo GA, Getman DP, Lu HF, Sikorsky JA, Walker JL, McDonald JJ, Houseman KA, Kocan GP, Kishore N, Mehta PP, Funkes-Shipy CL, Blystone L (2003) Discovery of novel benzothiazolesulfonamides as potent inhibitors of HIV-1 protease. Bioorg Med Chem 11:4769–4777

    Article  CAS  PubMed  Google Scholar 

  • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  • Pejchal V, Stepankova S, Drabina P (2011a) Synthesis of 1-[(1R)-1-(6-Fluoro-1,3-benzothiazol-2-yl)ethyl]-3-substituted phenyl ureas and their inhibition activity to acetylcholinesterase and butyrylcholinesterase. J Heterocycl Chem 48:57–62

    Article  CAS  Google Scholar 

  • Pejchal V, Stepankova S, Padelkova Z, Imramovsky A, Jampilek J (2011b) 1,3-substituted imidazolidine-2,4,5-triones: synthesis and inhibition of cholinergic enzymes. Molecules 16:7565–7582

    Article  CAS  PubMed  Google Scholar 

  • Pejchal V, Pejchalova M, Ruzickova Z (2015) Synthesis, structural characterization, antimicrobial and antifungal activity of substituted 6-fluorobenzo[d]thiazole amides. Med Chem Res 24:3660–3670

    Article  CAS  Google Scholar 

  • Pejchal V, Stepankova S, Pejchalova M, Kralovec K, Havelek R, Ruzickova Z, Ajani R, Lo M (2016) Synthesis, structural characterization, docking, lipophilicity and cytotoxicity of 1-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-3-alkyl carbamates, novel acetylcholinesterase and butyrylcholinesterase pseudo-irreversible inhibitors. Bioorg Med Chem 24:1560–1572

    Article  CAS  PubMed  Google Scholar 

  • Pfaller MA (2012) Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med 125:S3–S13

    Article  CAS  PubMed  Google Scholar 

  • Pindinelli E, Pilati T, Troisi L (2007) Synthesis and rearrangement of 1,2,3-triheteroaryl(aryl)-substituted aziridines. Eur J Org Chem 35:5926–5933

    Article  Google Scholar 

  • Reuveni M (2003) Activity of the new fungicide benthiavalicarb against plasmopara viticola and its efficacy in controlling downy mildew in grapevines. Eur J Plant Pathol 109:243–251

    Article  CAS  Google Scholar 

  • Sarkar S, Pasha TY, Shivakumar B, Chimkode R (2008) Synthesis of new 7-alkyl/aryl amino-6-fluoro 2-substituted phenyl carboxamido (1,3) benzothiazoles as anthelmintic agents. Ind J Heterocycl Chem 18:95–96

    CAS  Google Scholar 

  • Sekar V, Perumal P, Gandimathi S, Jayaseelan S, Rajesh V (2010) Synthesis and anticancer evaluation of novel benzothiazole derivatives. Asian J Chem 22:5487–5492

    CAS  Google Scholar 

  • Sheldrick GM (1997) SHELXL-97. University of Göttingen, Göttingen

    Google Scholar 

  • Xing JZ, Zhu L, Jackson JA, Gabos S, Sun XJ, Wang XB, Xu X (2005) Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem Res Toxicol 18:154–161

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhao B (2009) Bis(benzothiazol-2-ylmethyl)amine. Acta Crystallogr Sect E Struct Rep Online 65:1674–1675

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Královec.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pejchalová, M., Havelek, R., Královec, K. et al. Novel derivatives of substituted 6-fluorobenzothiazole diamides: synthesis, antifungal activity and cytotoxicity. Med Chem Res 26, 1847–1862 (2017). https://doi.org/10.1007/s00044-017-1894-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-1894-x

Keywords

Navigation