Skip to main content
Log in

CoMFA and CoMSIA studies on 6,7-disubstituted-4-phenoxyquinoline derivatives as c-Met kinase inhibitors and anticancer agents

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

c-Met kinase is a recognized target for the development of small-molecule inhibitors for the treatment of cancer. In this study, a diverse set of 74 c-Met kinase inhibitors consisted of 6,7-disubstituted-4-phenoxyquinoline derivatives were used for CoMFA and CoMSIA (3D QSAR). 3D QSAR models were obtained using rigid body (Distill) alignment of training and test set molecules. CoMFA and CoMSIA models were found statistically significant with leave-one-out correlation coefficients (q 2) of 0.626 and 0.556, respectively, cross-validated coefficients (r 2cv ) of 0.532 and 0.501, respectively, and conventional coefficients (r 2) of 0.907 and 0.940, respectively. QSAR models were validated by a test set of 23 compounds giving satisfactory predicted correlation coefficients (r 2pred ) of 0.456 and 0.701 for CoMFA and CoMSIA models, respectively. This study will provide clues to design new compounds as c-Met kinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asses Y, Leroux V, Tairi-Kellou S, Dono R, Maina F, Maigret B (2009) Analysis of c-Met kinase domain complexes: a new specific catalytic site receptor model for defining binding modes of ATP-competitive ligands. Chem Biol Drug Des 74:560–570

    Article  CAS  PubMed  Google Scholar 

  • Caballero J, Quiliano M, Alzate-Morales JH, Zimic M, Deharo E (2011) Docking and quantitative structure–activity relationship studies for 3-fluoro-4-(pyrrolo[2,1-f][1,2,4]triazin-4-yloxy)aniline,3-fluoro-4-(1H-pyrrolo[2,3-b]pyridin-4-yloxy)aniline, and 4-(4-amino-2-fluorophenoxy)-2-pyridinylamine derivatives as c-Met kinase inhibitors. J Comput Aided Mol Des 25(4):349–369

    Article  CAS  PubMed  Google Scholar 

  • Chen CY (2008) Discovery of novel inhibitors for c-Met by virtual screening and pharmacophore analysis. J Chin Inst Chem Eng, 39:617–624

    Article  Google Scholar 

  • Christensen JG, Schreck R, Burrows J, Kuruganti R, Chan E, Le P, Chen J, Wang X, Ruslim L, Blake R, Lipson KE, Ramphal J, Do S, Cui JJ, Cherrington JM, Mendel DB (2003) A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res 63:7345–7355

    CAS  PubMed  Google Scholar 

  • Clark M, Cramer RD, Opdenbosch NV (1989) Validation of the general purpose Tripos 5.2 force field. J Comput Chem 10:982–1012

    Article  CAS  Google Scholar 

  • Cramer RD III, Bunce JD, Patterson DE (1988a) Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant Struct Act Relat 7:18–25

    Article  Google Scholar 

  • Cramer RD, Patterson DE, Bunce JD (1988b) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  PubMed  Google Scholar 

  • Cui JJ (2014) Targeting receptor tyrosine kinase MET in cancer: small molecule inhibitors and clinical progress. J Med Chem 57(11):4427–4453

    Article  CAS  PubMed  Google Scholar 

  • Cui JJ, McTigue M, Nambu M, Tran-Dubé M, Pairish M, Shen H, Jia L, Cheng H, Hoffman J, Le P, Jalaie M, Goetz GH, Ryan K, Grodsky N, Deng Y, Parker M, Timofeevski S, Murray BW, Yamazaki S, Aguirre S, Li Q, Zou H, Christensen J (2012) Discovery of a novel class of exquisitely selective mesenchymal–epithelial transition factor (c-MET) protein kinase inhibitors and identification of the clinical candidate 2-(4-(1-(Quinolin-6-ylmethyl)-1H-[1,2,3]triazolo[4,5-b]pyrazin-6-yl)-1H-pyrazol-1-l)ethanol (PF-04217903) for the treatment of cancer. J Med Chem 55:8091–8109

    Article  CAS  PubMed  Google Scholar 

  • Eder JP, Woude GFV, Boerner SA, LoRusso PM (2009) Novel therapeutic inhibitors of the c-MET signaling pathway in cancer. Clin Cancer Res 15:2207–2214

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3228

    Article  CAS  Google Scholar 

  • Gavernet L, Palestro PH, Bruno-Blanch L (2012) Docking applied to the study of inhibitors of c-Met kinase. ISRN Phys Chem (Article ID 391897):1–5

  • Gherardi E, Birchmeier W, Birchmeier C, Woude GV (2012) Targeting MET in cancer: rationale and progress. Nat Rev 12:89–103

    Article  CAS  Google Scholar 

  • He CX, Ai J, Xing WQ, Chen Y, Zang HT, Huang M, Hu YH, Ding J, Gene MY (2014) Yhhu3813 is a novel selective inhibitor of c-Met kinase that inhibits c-Met-dependent neoplastic phenotypes of human cancer cells. Acta Pharmacol Sin 35:89–97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang D, Zhu X, Tang C, Mei Y, Chen W, Yang B, Han J, Qian H, Huang W (2012) 3D QSAR pharmacophore modeling for c-Met kinase inhibitors. Med Chem 8:1117–1125

    CAS  PubMed  Google Scholar 

  • Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Lee K, Kim HR, Chae CH (2013) 3D-QSAR studies on chemical features of 3-(benzo[d]oxazol-2-yl)pyridine-2-amines in the external region of c-Met active site. Bull Korean Chem Soc 34(12):3553–3558

    Article  CAS  Google Scholar 

  • Liu L, Norman MH, Lee M, Xi N, Siegmund A, Boezio AA, Booker S, Choquette D, D’Angelo ND, Germain J, Yang K, Yang Y, Zhang Y, Bellon SF, Whittington DA, Harmange JC, Dominguez C, Kim TS, Dussault I (2012) Structure-based design of novel class II c-Met inhibitors: 2. SAR and kinase selectivity profiles of the pyrazolone series. J Med Chem 55:1868–1897

    Article  CAS  PubMed  Google Scholar 

  • Ma PC, Tretiakova MS, Nallasura V, Jagadeeswaran R, Husain AN, Salgia R (2007) Downstream signalling and specific inhibition of c-Met/HGF pathway in small cell lung cancer: implications for tumour invasion. Br J Cancer 97:368–377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maroun CR, Rowlands T (2014) The Met receptor tyrosine kinase: a key player in oncogenesis and drug resistance. Pharmacol Ther 142:316–338

    Article  CAS  PubMed  Google Scholar 

  • Menis J, Levra MG, Novello S (2013) c-Met inhibition in lung cancer. Transl Lung Cancer Res 3:23–39

    Google Scholar 

  • Nisa L, Aebersold DM, Giger R, Zimmer Y, Medová M (2014) Biological, diagnostic and therapeutic relevance of the MET receptor signaling in head and neck cancer. Pharmacol Ther 143:337–349

    Article  CAS  PubMed  Google Scholar 

  • Nishii H, Chiba T, Morikami K, Fukami TA, Sakamoto H, Ko K, Koyano H (2010) Discovery of 6-benzyloxyquinolines as c-Met selective kinase inhibitors. Bioorganic Med Chem Lett 20:1405–1409

    Article  CAS  Google Scholar 

  • Qi B, Mi B, Zhai X, Xu Z, Zhang X, Tian Z, Gong P (2013) Discovery and optimization of novel 4-phenoxy-6,7-disubstituted quinolines possessing semicarbazones as c-Met kinase inhibitors. Bioorganic Med Chem 21:5246–5260

    Article  CAS  Google Scholar 

  • Schiering N, Knapp K, Marconi M, Flocco MM, Cui J, Perego R, Rusconi L, Cristiani C (2003) Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a. Proc Natl Acad Sci USA 100:12654–12659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tai W, Lu T, Yuan H, Wang F, Liu H, Lu S, Leng Y, Zhang W, Jiang Y, Chen Y (2012) Pharmacophore modeling and virtual screening studies to identify new c-Met inhibitors. J Mol Model 18:3087–3100

    Article  CAS  PubMed  Google Scholar 

  • Tang Q, Zhang G, Dua X, Zhu W, Li R, Lin H, Li P, Cheng M, Gong P, Zhao Y (2014) Discovery of novel 6,7-disubstituted-4-phenoxyquinoline derivatives bearing 5-(aminomethylene)pyrimidine-2,4,6-trione moiety as c-Met kinase inhibitors. Bioorganic Med Chem 22:1236–1249

    Article  CAS  Google Scholar 

  • Tian Y, Shen Y, Zhang X, Ye L, Li Z, Liu Z, Zhang J, Wu S (2014) Design some new type-i c-Met inhibitors based on molecular docking and topomer CoMFA research. Mol Inf 33:536–543

    Article  CAS  Google Scholar 

  • Vyas VK, Bhatt HG, Patel PK, Jalu J, Chintha C, Gupta N, Ghate M (2013) CoMFA and CoMSIA studies on C-aryl glucoside SGLT2 inhibitors as potential antidiabetic agents. SAR QSAR Environ Res 24:519–551

    Article  CAS  PubMed  Google Scholar 

  • Vyas VK, Patel A, Gupta N, Ghate M (2014) Design of novel anaplastic lymphoma kinase (ALK) inhibitors based on predictive 3D QSAR models using different alignment strategies. Med Chem Res 23:603–617

    Article  CAS  Google Scholar 

  • Xie QQ, Zhong L, Pan YL, Wang XY, Zhou JP, Di-wu L, Huang Q, Wang YL, Yang LL, Xie HZ, Yang SY (2011) Combined SVM-based and docking-based virtual screening for retrieving novel inhibitors of c-Met. Eur J Med Chem 46:3675–3680

    Article  CAS  PubMed  Google Scholar 

  • Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, Qian F, Chu F, Bentzien F, Cancilla B, Orf J, You A, Laird AD, Engst S, Lee L, Lesch J, Chou YC, Joly AH (2011) Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther 10:2298–2308

    Article  CAS  PubMed  Google Scholar 

  • You WK, McDonald DM (2008) The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Rep 41:833–839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan H, Tai W, Hu S, Liu H, Zhang Y, Yao S, Ran T, Lu S, Ke Z, Xiong X, Xu J, Chen Y, Lu T (2013) Fragment-based strategy for structural optimization in combination with 3D-QSAR. J Comput Aided Mol Des 27:897–915

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Zhuang J, Hu S, Li H, Xu J, Hu Y, Xiong X, Chen Y, Lu T (2014) Molecular modeling of exquisitely selective c-Met inhibitors through 3D-QSAR and molecular dynamics simulations. J Chem Inf Model 54(9):2544–2554

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Nirma University, Ahmedabad, India, for funding the minor research project (MRP) and other necessary facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek K. Vyas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parikh, P., Ghate, M. & Vyas, V.K. CoMFA and CoMSIA studies on 6,7-disubstituted-4-phenoxyquinoline derivatives as c-Met kinase inhibitors and anticancer agents. Med Chem Res 24, 4078–4092 (2015). https://doi.org/10.1007/s00044-015-1450-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-015-1450-5

Keywords

Navigation