Skip to main content
Log in

Representations of Gaussian Random Fields and Approximation of Elliptic PDEs with Lognormal Coefficients

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Approximation of elliptic PDEs with random diffusion coefficients typically requires a representation of the diffusion field in terms of a sequence \(y=(y_j)_{j\ge 1}\) of scalar random variables. One may then apply high-dimensional approximation methods to the solution map \(y\mapsto u(y)\). Although Karhunen–Loève representations are commonly used, it was recently shown, in the relevant case of lognormal diffusion fields, that multilevel-type expansions may yield better approximation rates. Motivated by these results, we construct wavelet-type representations of stationary Gaussian random fields defined on arbitrary bounded domains. The size and localization properties of these wavelets are studied, and used to obtain polynomial approximation results for the related elliptic PDE which outperform those achievable when using Karhunen–Loève representations. Our construction is based on a periodic extension of the stationary random field, and the expansion on the domain is then obtained by simple restriction. This makes the approach easily applicable even when the computational domain of the PDE has a complicated geometry. In particular, we apply this construction to the class of Gaussian processes defined by the family of Matérn covariances. The proposed periodic continuation technique has other relevant applications such as fast simulation of trajectories. It can be regarded as a continuous analog of circulant embedding techniques introduced for Toeplitz matrices. One of its specific features is that the rate of decay of the eigenvalues of the covariance operator of the periodized process provably matches that of the Fourier transform of the covariance function of the original process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bachmayr, M., Cohen, A., Migliorati, G.: Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients, ESAIM. Math. Model. Numer. Anal. 51(1), 321–339 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bachmayr, M., Cohen, A., DeVore, R., Migliorati, G.: Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients, ESAIM. Math. Model. Numer. Anal. 51(1), 341–363 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benassi, A., Jaffard, S., Roux, D.: Elliptic gaussian random processes. Revista Mathemática Iberoamericana 13, 19–90 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonami, A., Karoui, A.: Uniform approximation and explicit estimates for the prolate spheroidal wave functions. Constr. Approx. 43, 15–45 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Charrier, J.: Strong and weak error estimates for elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50(1), 216–246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciesielski, Z.: Hölder conditions for realizations of Gaussian processes. Trans. Am. Math. Soc. 99, 403–413 (1961)

    MATH  Google Scholar 

  8. Ciesielski, Z., Kerkyacharian, G., Roynette, B.: Quelques espaces fonctionnels associés à des processus gaussiens. Studia Mathematica 107, 171–204 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, S., Istas, J.: Fractional Fields and Applications. Springer, New York (2013)

    Book  MATH  Google Scholar 

  10. Dashti, M., Stuart, A.M.: The Bayesian approach to inverse problems. In: Ghanem, R., Higdon, D., Owhadi, H. (eds.) Handbook of Uncertainty Quantification. Springer, Berlin (2015)

    Google Scholar 

  11. Daubechies, I.: Ten lectures on wavelets. In: CBMS-NSF Regional Conference Series in Applied Mathematics, 61, SIAM Philadelphia (1992)

  12. Dembo, A., Mallows, C.L., Shepp, L.A.: Embedding nonnegative definite Toeplitz matrices in nonnegative definite circulant matrices, with application to covariance estimation. IEEE Trans. Inf. Theory 35, 1206–1212 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. DeVore, R.: Nonlinear approximation. Acta Numerica 7, 51–150 (1998)

    Article  MATH  Google Scholar 

  14. Dietrich, C.R., Newsam, G.N.: Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J. Sci. Comput. 18(4), 1088–1107 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elliott Jr., F., Horntrop, D., Majda, A.J.: A Fourier-Wavelet Monte Carlo method for fractal random fields. J. Comput. Phys. 132, 384–408 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Galvis, J., Sarkis, M.: Approximating infinity-dimensional stochastic Darcy’s equations without uniform ellipticity. SIAM J. Numer. Anal. 47(5), 3624–3651 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gittelson, C.: Stochastic Galerkin discretization of the log-normal isotropic diffusion problem. Math. Models Methods Appl. Sci. 20(2), 237–263 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gittelson, C.: Representation of Gaussian fields in series with independent coefficients. IMA J. Numer. Anal. 32, 294–319 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Graham, I.G., Kuo, F.Y., Nuyens, D., Scheichl, R., Sloan, I.H.: Quasi-Monte Carlo methods for for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230(10), 3668–3694 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Graham, I.G., Kuo, F.Y., Nichols, J.A., Scheichl, R., Schwab, Ch., Sloan, I.H.: Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131, 329–368 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hoang, V.H., Schwab, C.: \(N\)-term Galerkin Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs. Math. Models Methods Appl. Sci. 24, 797–826 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kerkyacharian, G., Ogawa, S., Petrushev, P., Picard, D.: Regularity of Gaussian processes on Dirichlet spaces. arXiv:1508.00822 (2015)

  23. Luschgy, H., Pagès, G.: Expansions for Gaussian processes and Parseval frames. Electron. J. Prob. 14, 1198–1221 (2009). Paper no. 42

  24. Meyer, Y.: Wavelets and Operators. Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  25. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—I. Bell Syst. Tech. J. 40, 43–64 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  26. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  27. Widom, H.: Asymptotic behaviour of the eigenvalues of certain integral operators. Trans. Am. Math. Soc. 109, 278–295 (1963)

    Article  MATH  Google Scholar 

  28. Wood, A.T.A., Chan, G.: Simulation of stationary Gaussian processes in \([0,1]^d\). J. Comput. Graph. Stat. 3(4), 409–432 (1994)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Research supported by the European Research Council under Grant ERC AdG 338977 BREAD. M.B. acknowledges support by the Hausdorff Center of Mathematics, University of Bonn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Bachmayr.

Additional information

Communicated by Stéphane Jaffard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachmayr, M., Cohen, A. & Migliorati, G. Representations of Gaussian Random Fields and Approximation of Elliptic PDEs with Lognormal Coefficients. J Fourier Anal Appl 24, 621–649 (2018). https://doi.org/10.1007/s00041-017-9539-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-017-9539-5

Keywords

Mathematics Subject Classification

Navigation