Skip to main content
Log in

Multiple Rank-1 Lattices as Sampling Schemes for Multivariate Trigonometric Polynomials

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We present a new sampling method that allows for the unique reconstruction of (sparse) multivariate trigonometric polynomials. The crucial idea is to use several rank-1 lattices as spatial discretization in order to overcome limitations of a single rank-1 lattice sampling method. The structure of the corresponding sampling scheme allows for the fast computation of the evaluation and the reconstruction of multivariate trigonometric polynomials, i.e., a fast Fourier transform. Moreover, we present a first algorithm that constructs a reconstructing sampling scheme consisting of several \(\text {rank}\text{- }1\) lattices for arbitrary, given frequency index sets. Various numerical tests indicate the advantages of the constructed sampling schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arnold, A., Giesbrecht, M., Roche, D.S.: Faster sparse multivariate polynomial interpolation of straight-line programs. J. Symb. Comput. 75, 4–24 (2016). (Special issue on the conference ISSAC 2014: Symbolic computation and computer algebra)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baszenski, G., Delvos, F.-J.: A discrete Fourier transform scheme for Boolean sums of trigonometric operators. In: Chui, C.K., Schempp, W., Zeller, K. (eds.) Multivariate Approximation Theory IV, ISNM 90, pp. 15–24. Birkhäuser, Basel (1989)

    Chapter  Google Scholar 

  3. Byrenheid, G., Dũng, D., Sickel, W., Ullrich, T.: Sampling on energy-norm based sparse grids for the optimal recovery of Sobolev type functions in \({H}^{\gamma }\). J. Approx. Theory 207, 207–231 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Byrenheid, G., Kämmerer, L., Ullrich, T., Volkmer, T.: Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness. Numer. Math. (2016, accepted)

  5. Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Döhler, M., Kämmerer, L., Kunis, S., Potts, D.: NHCFFT, Matlab toolbox for the nonequispaced hyperbolic cross FFT. http://www.tu-chemnitz.de/~lkae/nhcfft

  7. Dung, D., Temlyakov, V.N., Ullrich, T.: Hyperbolic cross approximation (2016). arXiv:1601.03978 [math.NA]

  8. Gradinaru, V.: Fourier transform on sparse grids: code design and the time dependent Schrödinger equation. Computing 80, 1–22 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Griebel, M., Hamaekers, J.: Fast discrete Fourier transform on generalized sparse grids. In: Garcke, J., Pflüger, D. (eds.) Sparse Grids and Applications—Munich. Lecture Notes in Computational Science and Engineering, vol. 97, pp. 75–107. Springer, Berlin (2014)

    Google Scholar 

  10. Hallatschek, K.: Fouriertransformation auf dünnen Gittern mit hierarchischen Basen. Numer. Math. 63, 83–97 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hinrichs, A., Markhasin, L., Oettershagen, J., Ullrich, T.: Optimal quasi-Monte Carlo rules on order 2 digital nets for the numerical integration of multivariate periodic functions. Numer. Math. 134, 163–196 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kämmerer, L.: Reconstructing hyperbolic cross trigonometric polynomials by sampling along rank-1 lattices. SIAM J. Numer. Anal. 51, 2773–2796 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kämmerer, L.: High dimensional fast fourier transform based on rank-1 lattice sampling. Dissertation. Universitätsverlag Chemnitz (2014)

  14. Kämmerer, L., Kunis, S.: On the stability of the hyperbolic cross discrete Fourier transform. Numer. Math. 117, 581–600 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kämmerer, L., Kunis, S., Potts, D.: Interpolation lattices for hyperbolic cross trigonometric polynomials. J. Complex. 28, 76–92 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Korobov, N.M.: Approximate evaluation of repeated integrals. Dokl. Akad. Nauk. SSSR 124, 1207–1210 (1959). In Russian

    MathSciNet  MATH  Google Scholar 

  17. Krahmer, F., Rauhut, H.: Structured random measurements in signal processing. GAMM-Mitt. 37, 217–238 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kuo, F.Y., Sloan, I.H., Woźniakowski, H.: Lattice rules for multivariate approximation in the worst case setting. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 289–330. Springer, Berlin (2006)

    Chapter  Google Scholar 

  19. Kuo, F.Y., Sloan, I.H., Woźniakowski, H.: Lattice rule algorithms for multivariate approximation in the average case setting. J. Complex. 24, 283–323 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kuo, F.Y., Wasilkowski, G.W., Woźniakowski, H.: Lattice algorithms for multivariate \(L_{\infty }\) approximation in the worst-case setting. Constr. Approx. 30, 475–493 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, D., Hickernell, E.J.: Trigonometric spectral collocation methods on lattices. In: Cheng, S.Y., Shu, C.W., Tang, T. (eds.) Recent Advances in Scientific Computing and Partial Differential Equations. Contemporary Mathematics, vol. 330, pp. 121–132. AMS, Providence (2003)

    Chapter  Google Scholar 

  22. Munthe-Kaas, H., Sørevik, T.: Multidimensional pseudo-spectral methods on lattice grids. Appl. Numer. Math. 62, 155–165 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Niederreiter, H.: Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Am. Math. Soc. 84, 957–1041 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Potts, D., Volkmer, T.: Sparse high-dimensional FFT based on rank-1 lattice sampling. Appl. Comput. Harmon. Anal. 41, 713–748 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sickel, W., Ullrich, T.: The Smolyak algorithm, sampling on sparse grids and function spaces of dominating mixed smoothness. East J. Approx. 13, 387–425 (2007)

    MathSciNet  Google Scholar 

  26. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford Science Publications, New York (1994)

    MATH  Google Scholar 

  27. Sloan, I.H., Reztsov, A.V.: Component-by-component construction of good lattice rules. Math. Comput. 71, 263–273 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Temlyakov, V.N.: Reconstruction of periodic functions of several variables from the values at the nodes of number-theoretic nets. Anal. Math. 12, 287–305 (1986). (In Russian)

    Article  MathSciNet  MATH  Google Scholar 

  29. Temlyakov, V.N.: Approximation of Periodic Functions. Computational Mathematics and Analysis Series. Nova Science Publishers Inc., Commack (1993)

    MATH  Google Scholar 

  30. Zeng, X., Leung, K.T., Hickernell, F.J.: Error analysis of splines for periodic problems using lattice designs. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 501–514. Springer, Berlin (2006)

    Chapter  Google Scholar 

  31. Zenger, C.: Sparse grids. Parallel Algorithms for Partial Differential Equations (Kiel, 1990). Notes on Numerical Fluid Mechanics, vol. 31, pp. 241–251. Vieweg, Braunschweig (1991)

    Google Scholar 

  32. Zou, L., Jiang, Y.: Estimation of the eigenvalues and the smallest singular value of matrices. Linear Algebra Appl. 433, 1203–1211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Kämmerer.

Additional information

Communicated by Vladimir Temlyakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kämmerer, L. Multiple Rank-1 Lattices as Sampling Schemes for Multivariate Trigonometric Polynomials. J Fourier Anal Appl 24, 17–44 (2018). https://doi.org/10.1007/s00041-016-9520-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-016-9520-8

Keywords

Mathematics Subject Classification

Navigation