Skip to main content
Log in

High mean relatedness among communally galling Tamalia aphids revealed by AFLP analysis

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Cooperative or eusocial behavior occurs in gall-inducing insects, but the ecological and evolutionary contexts for these behaviors vary in their details. Foundresses of the manzanita leaf-gall aphid, Tamalia coweni, regularly share galls. Because aphids undergo parthenogenesis, communal foundresses are potential clone mates. Under the kin selection hypothesis, a high level of relatedness is predicted to lower genetically based conflict among females in a group and thereby favor communal gall occupation. We recorded the frequency of communal behavior in a population of T. coweni on its host plant, Arctostaphylos patula, and measured reproductive output in single- and multiple-occupant galls. Eleven percent of the 375 galls examined were communally occupied, with double-foundress galls the commonest class, up to a maximum of five foundresses within galls. Total productivity of communal galls (measured by numbers of offspring per gall) was higher than for single-foundress galls on a per-gall basis, but lower per capita. We genotyped foundresses with amplified fragment length polymorphism (AFLP)-PCR markers, to estimate relatedness among gall co-occupants and foundresses from randomly selected galls in the population. Analysis of genetic distance between communal foundresses revealed that relatedness among gall cohabitants was significantly higher, on average, than for foundresses drawn from the population at random (P < 0.001). Phylogenetic analysis using parsimony (PAUP) of the AFLP profiles indicated that half the foundresses sharing galls were most closely related to their gall mates. Our results are consistent with kin selection theory, and suggest that communal gall occupation in this species may be interpreted as cooperative behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbot P., Withgott J.H. and Moran N. 2001. Genetic conflict and conditional altruism in social aphid colonies. Proc. Natl Acad. Sci. USA 98: 12068-12071

  • Abbot P. et al. 2011. Inclusive fitness theory and eusociality. Nature 471: E1-E4

  • Addicott J.F. 1979. On the population biology of aphids. Am. Nat. 114: 760-763

  • Akçay E., Meirowitz A., Ramsay K.W. and Levin S.A. 2012. Evolution of cooperation and skew under imperfect information. Proc. Natl Acad. Sci. USA 109: 14936-14941

  • Aoki S., Kurosu U. and Stern D.L. 1991. Aphid soldiers discriminate between soldiers and non-soldiers, rather than between kin and non-kin, in Ceratoglyphina bambusae. Anim. Behav. 42: 865-866

  • Aoki S. and Makino S. 1982. Gall usurpation and lethal fighting among fundatrices of the aphid Epipemphigus niisimae (Homoptera, Pemphigidae). Kontyû 45: 276-282

  • Blackman R.L. 1994. The simplification of aphid terminology. Eur. J. Entomol. 91: 139-141

  • Bourke A.F.G. 2011. The validity and value of inclusive fitness theory. Proc. R. Soc. B 278: 3313-3320

  • Bryden J. and Jansen V.A.A. 2010. The impact of clonal mixing on the evolution of social behaviour in aphids. Proc. R. Soc. B 277: 1651-1657

  • Cole B.J. 1984. Colony efficiency and the reproductivity effect in Leptothorax allardycei (Mann). Insect. Soc. 31: 403-407

  • Dixon A.F.G. 1998. Aphid Ecology, 2nd ed. Chapman & Hall, London

  • Fletcher J.A. and Zwick M. 2006. Unifying the theories of inclusive fitness and reciprocal altruism. Am. Nat. 168: 252-262

  • Foster W.A. and Northcutt P.K. 1994. Galls and the evolution of social behavior in aphids. Syst. Assoc. 49: 161-182

  • Hamilton W.D. 1963. The evolution of altruistic behavior. Am. Nat. 97: 354-356

  • Hamilton W.D. 1964. The genetical evolution of social behavior. I. J. Theor. Biol. 7: 1-16

  • Hamilton W.D. 1967. Extraordinary sex ratios. Science 156: 477-488

  • Hamilton W.D. 1972. Altruism and related phenomena, mainly in the social insects. Annu. Rev. Ecol. Syst. 3: 193-232

  • Hamilton W.D. 1987. Kinship, recognition and disease: constraints of social evolution. In: Animal Societies: Theories and Facts (Itô Y., Brown J.L. and Kikkawa K., Eds). Japan Scientific Societies Press, Tokyo, pp 81-102

  • Hawthorne D.J. and Via S. 2001. Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 412: 904-907

  • Holland B.R., Clarke A.C. and Meudt H.M. 2008. Optimizing automated AFLP scoring parameters to improve phylogenetic resolution. Syst. Biol. 57: 347-366

  • Hölldobler B. and Wilson E.O. 1990. The Ants. Belknap Press, Cambridge, MA

  • Inbar M. 1998. Competition, territoriality, and maternal defense in a gall-forming aphid. Ethol. Ecol. Evol. 10: 159-170

  • Itô Y. 1989. The evolutionary biology of sterile soldiers in aphids. Trends Ecol. Evol. 4: 69-73

  • Itô Y. 1993. Behaviour and Social Evolution of Wasps: The Communal Aggregation Hypothesis. Oxford University Press, Oxford

  • Janzen D. 1977. What are dandelions and aphids? Am. Nat. 111: 586-589

  • Johnson P.C.D., Whitfield J.A., Foster W.A. and Amos W. 2002. Clonal mixing in the soldier-producing aphid Pemphigus spyrothecae (Hemiptera: Aphididae). Mol. Ecol. 11: 1525-1531

  • Leadbeater E., Carruthers J.M., Green J.P., Rosser N.S. and Field J. 2011. Nest inheritance is the missing source of direct fitness in a primitively social insect. Science 333: 874-876

  • Loxdale H.D. 2008. The nature and reality of the aphid clone: genetic variation, adaptation and evolution. Agr. Forest Entomol. 10: 81-90

  • Maynard Smith J. 1964. Group selection and kin selection. Nature 201: 1145-1147

  • Maynard Smith J. and Szathmáry E. 1995. The Major Transitions in Evolution. Oxford University Press, NY

  • Michener C.D. 1964. Reproductive efficiency in relation to colony size in hymenopterous societies. Insect. Soc. 11: 317-341

  • Michener C.D. 1974. The Social Behavior of the Bees. Belknap Press, Cambridge, MA

  • Michener C.D. and Lange R.B. 1958. Distinctive type of primitive social behavior among bees. Science 127: 1046-1047

  • Miller D.G. III 1998a. Life history, ecology and communal gall occupation in the manzanita leaf-gall aphid, Tamalia coweni (Cockerell) (Homoptera: Aphididae). J. Nat. Hist. 32: 95-103

  • Miller D.G. III 1998b. Consequences of communal gall occupation and a test for kin discrimination in the aphid Tamalia coweni (Cockerell) (Homoptera: Aphididae). Behav. Ecol. Sociobiol. 43: 95-103

  • Miller D.G. III 2004. The ecology of inquilinism in communally parasitic Tamalia aphids (Hemiptera: Aphididae). Ann. Entomol. Soc. Am. 97: 1233-1241

  • Miller D.G. III 2005. Ecology and radiation of galling aphids (Tamalia; Hemiptera: Aphididae) on their host plants (Ericaceae). Basic Appl. Ecol. 6: 463-469

  • Miller D.G. III and Avilés L. 2000. Sex ratio and brood size in a monophagous outcrossing gall aphid, Tamalia coweni. Evol. Ecol. Res. 2: 745-759

  • Miller D.G. III and Crespi B. 2003. The evolution of inquilinism, host-plant use, and mitochondrial substitution rates in Tamalia gall aphids. J. Evol. Biol. 16: 731-743

  • Monti V., Mandrioli M., Rivi M. and Manicardi G.C. 2012. The vanishing clone: karyotypic evidence for extensive intraclonal genetic variation in the peach potato aphid, Myzus persicae (Hemiptera: Aphididae). Biol. J. Linn. Soc. 105: 350-358

  • Mueller U.G. and Wolfenbarger L.L. 1999. AFLP genotyping and fingerprinting. Trends Ecol. Evol. 14: 389-394

  • Nei M.and Li W. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl Acad. Sci. USA 76: 5269-5273

  • Nowak M.A., Tarnita C.E. and Wilson E.O. 2010. The evolution of eusociality. Nature 466: 1057-1062

  • Oliveira P.S., Camargo R.X. and Fourcassié V. 2011. Nesting patterns, ecological correlates of polygyny and social organization in the neotropical arboreal ant Odontomachus hastatus (Formicidae, Ponerinae). Insect. Soc. 58: 207-217

  • Ren N. and Timko M.P. 2001. AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome 44: 559-571

  • Ross K.G. and Matthews R.W. (Eds) 1991. The Social Biology of Wasps. Comstock Publisher Associates, Ithaca, NY

  • Seger J. 1993. Opportunities and pitfalls in cooperative reproduction. In: Queen Number and Sociality in Insects (Keller L., Ed). Oxford University Press, Oxford, pp 1-15

  • Sherman P.W., Lacey E.A., Reeve H.K. and Keller L. 1995. The eusociality continuum. Behav. Ecol. 6: 102-108

  • Shibao H. 1999. Lack of kin discrimination in the eusocial aphid Pseudoregma bambucicola (Homoptera: Aphididae). J. Ethol. 17: 17-24

  • Stern D.L. and Foster W.A. 1996. The evolution of soldiers in aphids. Biol. Rev. 71: 27-79

  • Timm A.E., Pringlea K.L. and Warnicha L. 2005. Genetic diversity of woolly apple aphid Eriosoma lanigerum (Hemiptera: Aphididae) populations in the Western Cape, South Africa. Bull. Entomol. Res. 95: 187-191

  • Valenti M.A., Berryman A.A. and Ferrel G.T. 1996. Arthropods associated with a manzanita gall induced by the aphid Tamalia coweni (Cockerell) (Homoptera: Aphididae). Can. Entomol. 128: 839-847

  • Vargo E.L. 1993. Colony reproductive structure in a polygyne population of Solenopsis geminata (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 86: 441-449

  • Vorwerk S. 2007. Molecular evidence of intraclonal variation and implications for adaptational traits of grape phylloxera populations (Daktulosphaira vitifoliae, Fitch). Dissertation, University of Hohenheim

  • Vorwerk S. and Forneck A. 2007. Analysis of genetic variation within clonal lineages of grape phylloxera (Daktulosphaira vitifoliae Fitch) using AFLP fingerprinting and DNA sequencing. Genome 50: 660-667

  • Vos P., Hogers R., Bleeker M., Reijans M., Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. and Zabeau M. 1995. AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res. 23: 4407-4414

  • Vuylsteke M., Peleman J.D. and van Eijk M.J.T. 2007. AFLP technology for DNA fingerprinting. Nature Protocols 2: 1387-1398

  • Wang C.C., Tsaur S.-C., Kurosu U., Aoki S. and Lee H.-J. 2008. Social parasitism and behavioral interactions between two gall-forming social aphids. Insect. Soc. 55: 147-152

  • Weisser W.W. and Stadler B. 1994. Phenotypic plasticity and fitness in aphids. Eur. J. Entomol. 91: 71-78

  • West S.A, Pen I. and Griffin A.S. 2002. Cooperation and conflict between relatives. Science 296: 72-75

  • Wilson E.O. 1971. The Insect Societies. Belknap Press, Cambridge, MA

  • Whitham T.G. 1978. Habitat selection by Pemphigus aphids in response to resource limitation and competition. Ecology 59: 1164-1176

  • Whitham T.G. 1979. Territorial behavior of Pemphigus gall aphids. Nature 279: 324-325

Download references

Acknowledgments

This work was performed in partial fulfillment of a Master’s degree in Biological Sciences at California State University, Chico, and was supported by the Big Chico Creek Ecological Reserve and the CSU, Chico Office of Graduate studies. BGT is grateful to Kristina Schierenbeck and Andrea White for their assistance and support, and would like to thank David H. Kistner, the staff of the CSU, Chico Aquatic Bioassessment Lab and the staff of the CSUC Department of Biological Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Miller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, B.G., Miller, D.G. High mean relatedness among communally galling Tamalia aphids revealed by AFLP analysis. Insect. Soc. 61, 395–402 (2014). https://doi.org/10.1007/s00040-014-0367-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-014-0367-1

Keywords

Navigation