Skip to main content

Advertisement

Log in

Novel plant communities after glacial retreat in Colombia: (many) losses and (few) gains

  • Original Article
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

Early plant primary succession in recently deglacierized terrains is a good indicator of the species losses and gains that affect novel alpine plant communities migrating under the pressure of climate warming. In the tropical alpine -páramo- region of the northern Andes, home to the world's greatest alpine phyto-diversity, forced primary succession will condition the conservation of many species. Using a post-glacial chronosequence between the little ice age and present below the Conejeras glacier (Colombia) as a space-for-time substitution approach, we sought to determine how time since deglacierization affects the composition, the biogeographic origin and the growth form distribution of novel tropical alpine plant communities. Using an array of multivariate techniques and the Dirichlet model, we assessed relationships among plant communities and with environmental factors. Communities established in less than 169 years lacked a number of characteristic and endemic species usually found in the national park Los Nevados, such as Calamagrostis effusaSenecio isabelis and Espeletia hartwegiana. Moreover, these communities have been colonized by non-native species, e.g., Rumex acetosella. Upright shrubs and large tussock grasses, characteristic of the alpine tropics, established slowly because they required highly organic, slow-developing soils. Taxa of tropical biogeographic origin were under-represented early after deglacierization in comparison with temperate taxa. These results suggest the existence of a strong climatic debt for some native species, tropical growth forms and taxa of tropical origin, which may translate into significant taxonomic and functional losses whereas the few observed gains concern the establishment of non-native species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All relevant data may be accessible via the VegAndes database upon request. Photographs of the species taken into consideration in the analysis are available at https://identify.plantnet.org/fr/groups/19892283922

References

  • Alexander JM et al (2018) Lags in the response of mountain plant communities to climate change. Glob Change Biol 24:563–579. https://doi.org/10.1111/gcb.13976

    Article  Google Scholar 

  • Anthelme F, Lavergne S (2018) Alpine and arctic plant communities: a worldwide perspective. Perspectives Plant Ecol Evol Syst 30:1–131. https://doi.org/10.1016/j.ppees.2017.12.002

    Article  Google Scholar 

  • Anthelme F, Cavieres LA, Dangles O (2014a) Facilitation among plants in alpine environments in the face of climate change. Frontiers Plant Sci 5:387. https://doi.org/10.3389/fpls.2014.00387

    Article  Google Scholar 

  • Anthelme F, Jacobsen D, Macek P, Meneses RI, Moret P, Beck S, Dangles O (2014b) Biodiversity patterns and continental insularity in the tropical high Andes. Arctic Antarctic Alp Res 46:811–828. https://doi.org/10.1657/1938-4246-46.4.811

    Article  Google Scholar 

  • Anthelme F, Cauvy-Fraunié S, Francou B, Cáceres B, Dangles O (2021) Living at the edge: increasing stress for plants 2–13 years after the retreat of a tropical glacier. Frontiers Ecol Evol 9:584872. https://doi.org/10.3389/fevo.2021.584872

    Article  Google Scholar 

  • Anthelme F, Peyre G (2020) Biogeography of South American highlands. In: Goldstein M, DellaSala D (eds) Encyclopedia of the World’s Biomes. Elsevier, Amsterdam, pp 518–529. https://doi.org/10.1016/B978-0-12-409548-9.11811-1

    Chapter  Google Scholar 

  • Benavides JC, Vitt DH, Wieder RK (2013) The influence of climate change on recent peat accumulation patterns of Distichia muscoides cushion bogs in the high-elevation tropical Andes of Colombia. J Geophys Res Biogeosci 118(4):1627–1635. https://doi.org/10.1002/2013JG002419

    Article  Google Scholar 

  • Buytaert W, Cuesta-Camacho F, Tobón C (2011) Potential impacts of climate change on the environmental services of humid tropical alpine regions. Global Ecol Biogeogr 20:19–33

    Article  Google Scholar 

  • Cannone N, Diolaiuti G, Guglielmin M, Smiraglia C (2008) Accelerating climate change impacts on alpine glacier forefield ecosystems in the European Alps. Ecol Applications 8:637–648

    Article  Google Scholar 

  • Cauvy-Fraunié S, Dangles O (2019) A global synthesis of biodiversity responses to glacier retreat. Nature Ecol Evol 3:1675–1685

    Article  Google Scholar 

  • Cavieres LA (2020) The role of plant-plant facilitation in non-native plant invasions. In: Traveset A, Richardson DM (eds) Plant invasions: the role of biotic interactions. CABI, Wallingford, pp 138–152

    Chapter  Google Scholar 

  • Ceballos JL, Euscátegui C, Ramírez J, Cañon M, Huggel C, Haeberli W, Machguth H (2006) Fast shrinkage of tropical glaciers in Colombia. Annals Glaciol 43:194–201

    Article  Google Scholar 

  • Crawford RM (2008) Plants at the margin: ecological limits and climate change. Cambridge University Press, Cambridge

  • Cruz-Maldonado N et al (2021) Aboveground-trait variations in 11 (sub) alpine plants along a 1000 m elevation gradient in tropical Mexico. Alp Bot 131:187–220

    Article  Google Scholar 

  • Cuesta F et al (2017) Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. Ecography 40:1381–1394

    Article  Google Scholar 

  • Douma JC, Weedon JT (2019) Analysing continuous proportions in ecology and evolution: a practical introduction to beta and Dirichlet regression. Methods Ecol Evol 10:1412–1430

    Article  Google Scholar 

  • Florez A (2003) Colombia: evolución de sus relieves y modelados. Univ Nacional Colombia Unibiblos, Bogota

  • Gaüzère P, Princé K, Devictor V (2017) Where do they go? The effects of topography and habitat diversity on reducing climatic debt in birds. Glob Change Biol 23:2218–2229

    Article  Google Scholar 

  • Gehrke B (2018) Staying cool: preadaptation to temperate climates required for colonising tropical alpine-like environments. PhytoKeys 96:111125. https://doi.org/10.3897/phytokeys.96.13353

    Article  Google Scholar 

  • Hedberg I, Hedberg O (1979) Tropical-alpine life-forms of vascular plants. Oikos. 33(2):297–307

    Article  Google Scholar 

  • Jaramillo D (2002) Introducción a la ciencia del suelo. Univ Nacional de Colombia, Medellin

  • Jordon-Thaden IE, Al-Shehbaz IA, Koch MA (2013) Species richness of the globally distributed, arctic–alpine genus Draba L. (Brassicaceae). Alp Bot 123:97–106

    Article  Google Scholar 

  • Kaufman L, Rousseuw PJ (2009) Partitioning around the medoids. In: Leonard K, Peter JR (eds) Finding groups in data: an introduction to cluster analysis. Wiley, NY, pp 68–125. https://doi.org/10.1002/9780470316801.ch2

    Chapter  Google Scholar 

  • Khedim N et al (2021) Topsoil organic matter build-up in glacier forelands around the world. Glob Change Biol 27:1662–1677

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems 2nd Ed. Springer, Berlin

  • Kuhry P (1988) A paleobotanical and palynological study of Holocene peat from the El Bosque mire, located in a volcanic area of the Cordillera Central of Colombia. Rev Palaeobotany Palynology 55:19–72

    Article  Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK et al (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571

    Article  PubMed  Google Scholar 

  • Larcher W (1987) Stress bei pflanzen. Naturwissenschaften 74:158–167

    Article  CAS  Google Scholar 

  • Le Roux PC, McGeoch MA (2008) Rapid range expansion and community reorganization in response to warming. Glob Change Biol 14:2950–2962

    Article  Google Scholar 

  • Lenoir J, Svenning JC (2015) Climate-related range shifts–a global multidimensional synthesis and new research directions. Ecography 38:15–28

    Article  Google Scholar 

  • Llambí LD, Hupp N, Saez A, Callaway R (2018) Reciprocal interactions between a facilitator, natives, and exotics in tropical alpine plant communities. Persp Plant Ecol Evol Syst 30:82–88

    Article  Google Scholar 

  • Llambí LD et al (2020) Interactions between nurse-plants and an exotic invader along a tropical alpine elevation gradient: growth-form matters. Alp Bot 130:59–73. https://doi.org/10.1007/s00035-020-00235-6

    Article  Google Scholar 

  • Llambí LD et al (2021) Vegetation assembly, adaptive strategies and positive interactions during primary succession in the forefield of the last Venezuelan glacier. Frontiers Ecol Evolution 9:657755. https://doi.org/10.3389/fevo.2021.657755

    Article  Google Scholar 

  • Losapio G, Cerabolini BE, Maffioletti C, Tampucci D, Gobbi M, Caccianiga M (2021) The consequences of glacier retreat are uneven between plant species. Frontiers Ecol Evol 8:616562. https://doi.org/10.3389/fevo.2020.616562

    Article  Google Scholar 

  • Luckman BH, Wiegandt E, Orlove BS (2008) Darkening peaks: glacier retreat, science, and society. University of California Press, Berkeley

  • Luteyn JL, Churchill SP, Griffin D, Gradstein SR, Sipman HJ, Mauricio R, Gavilanes A (1999) Páramos: a checklist of plant diversity, geographical distribution, and botanical literature. New York Botanical Garden Press, New York

  • Maier MJ (2014) DirichletReg: Dirichlet Regression for Compositional Data in R. University of Economics and Business, Vienna

  • JA Matthews (1992) The ecology of recently deglaciated terrain. A geological approach to glacier forelands and primary succession. Cambridge University Press, Cambridge

  • Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C (2011) Global biodiversity conservation: the critical role of hotspots. In: Zachos FE, Habel JC (Eds.) Biodiversity hotspots: distribution and protection of conservation priority areas. Springer, Berlin

  • Mora MA, Llambí LD, Ramírez L (2018) Giant stem rosettes have strong facilitation effects on alpine plant communities in the tropical Andes. Plant Ecol Div 12:593–606. https://doi.org/10.1080/17550874.2018.1507055

    Article  Google Scholar 

  • Morán-Tejeda E, Ceballos JL, Peña K, Lorenzo-Lacruz J, López-Moreno JI (2018) Recent evolution and associated hydrological dynamics of a vanishing tropical Andean glacier: Glaciar de Conejeras, Colombia. Hydrol Earth Syst Sci 22:5445–5461

    Article  Google Scholar 

  • Nürk NM, Michling F, Linder HP (2018) Are the radiations of temperate lineages in tropical alpine ecosystems pre-adapted? Global Ecol Biogeogr 27:334–345

    Article  Google Scholar 

  • Pauli H, Gottfried M, Hohenwallner D, Reiter K, Grabherr G (2005) Ecological climate impact research in high mountain environments: GLORIA (global observation research initiative in alpine environments)—its roots, purpose and long-term perspectives massif. In: HuberBugmannReasoner UMHKMMA (ed) Global change and mountain regions: an overview of current knowledge. Springer, Dordrecht, pp 383–391

    Chapter  Google Scholar 

  • Peyre G, Balslev H, Font X (2018) Phytoregionalisation of the Andean Páramo. Peerj 6:e4786

    Article  PubMed  PubMed Central  Google Scholar 

  • Peyre G, Lenoir J, Karger DN, Gomez M, Gonzalez A, Broennimann O, Guisan A (2020) The fate of páramo plant assemblages in the sky islands of the northern Andes. J Veg Sci. https://doi.org/10.1111/jvs.12898

    Article  Google Scholar 

  • Peyre G, Osorio D, François R, Anthelme F (2021) Mapping the páramo land-cover in the Northern Andes. Int J Remote Sensing 42:7777–7797

    Article  Google Scholar 

  • Peyre G, Lopez C, Diaz MD, Lenoir J (in press.) Climatic refugia in the coldest neotropical hotspot, the Andean páramo. Diversity Distrib.

  • Peyre G (2021) Terrestrial biodiversity hotspots: challenges and opportunities. In: Leal Filho W, Azul AM, Brandli L, Lange Salvia A, Wall T (eds) Encyclopaedia of the UN development goals. Springer, Cham, pp 12–56

    Google Scholar 

  • Rabatel A et al (2018) Toward an imminent extinction of Colombian glaciers? Series A Phys Geogr 100:75–95

    Article  Google Scholar 

  • Rada F, Azócar A, García-Núñez C (2019) Plant functional diversity in tropical Andean páramos. Plant Ecol Diversity 12:539–553

    Article  Google Scholar 

  • Ramsay PM, Oxley ERB (1997) The growth form composition of plant communities in the Ecuadorian páramos. Plant Ecol 131:173–192

    Article  Google Scholar 

  • Rosero et al (2021) Multi-taxa colonisation along the foreland of a vanishing equatorial glacier. Ecography 44:1010–1012. https://doi.org/10.1111/ecog.05478

    Article  Google Scholar 

  • Salamanca S, Cleef AM, Rangel C (2003) The paramo vegetation of the volcanic Ruiz-Tolima massif. In: Van der Hammen T, Dos Santos A (eds) Studies on tropical Andean ecosystems, vol 5. Cramer, Stuttgart, pp 1–77

    Google Scholar 

  • Scheen AC, Brochmann C, Brysting AK, Elven R, Morris A, Soltis DE, Solti P, Albert VA (2004) Northern hemisphere biogeography of Cerastium (Caryophyllaceae): insights from phylogenetic analysis of noncoding plastidnucleotide sequences. Am J Bot 91:943–952

    Article  PubMed  CAS  Google Scholar 

  • Sklenář P, Balslev H (2007) Geographic flora elements in the Ecuadorian superpáramo. Flora 202:50–61

    Article  Google Scholar 

  • Sklenář P, Dušková E, Balslev H (2011) Tropical and temperate: evolutionary history of páramo flora. Bot Rev 77:71–108

    Article  Google Scholar 

  • Sklenář P, Hedberg I, Cleef AM (2014) Island biogeography of tropical alpine floras. J Biogeogr 41:287–297

    Article  Google Scholar 

  • Sklenář P, Romoleroux K, Muriel P, Jaramillo R, Bernardi A, Diazgranados M, Moret P (2021) Distribution changes in páramo plants from the equatorial high Andes in response to increasing temperature and humidity variation since 1880. Alp Bot 131(2):201–212

    Article  Google Scholar 

  • Squeo FA, Rada F, Azócar A, Goldstein G (1991) Freezing tolerance and avoidance in high tropical Andean plants: is it equally represented in species with different plant height? Oecologia 86(3):378–382

    Article  PubMed  CAS  Google Scholar 

  • Steinbauer MJ et al (2018) Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556:231–234

    Article  PubMed  CAS  Google Scholar 

  • Thouret JC, Van Der Hammen T, Salomons B, Juvigné E (1997) Late Quaternary glacial stades in the Cordillera Central, Colombia, based on glacial geomorphology, tephra–soil stratigraphy, palynology, and radiocarbon dating. J Quaternary Sci 12:347–369

    Article  Google Scholar 

  • Urbina JC, Benavides JC (2015) Simulated small scale disturbances increase decomposition rates and facilitates invasive species encroachment in a high elevation tropical Andean peatland. Biotropica 47:143–151

    Article  Google Scholar 

  • Valencia JB, Mesa J, León JG, Madriñán S, Cortés AJ (2020) Climate vulnerability assessment of the Espeletia complex on Páramo Sky Islands in the Northern Andes. Frontiers Ecol Evol 8:309

    Article  Google Scholar 

  • Vuille M et al (2018) Rapid decline of snow and ice in the tropical Andes-Impacts, uncertainties and challenges ahead. Earth-Sci Rev 176:195–213

    Article  Google Scholar 

  • Walker LR, Del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

  • Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736

    Article  Google Scholar 

  • Zimmer A, Meneses RI, Soruco RAA, Dangles O, Anthelme F (2018) Time lag between glacial retreat and upward migration alters tropical alpine communities. Persp Plant Ecol Evol Syst. 30:89–102

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Joint International laboratory LMI BIOINCA, the University of Los Andes and the IRD. The authors thank the National park Los Nevados for providing access to the study sites.

Funding

Joint International Laboratory LMI BIOINCA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Anthelme.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest/competing interests.

Ethical approval

This study does not involve research on human participants or animals.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

35_2022_282_MOESM1_ESM.pdf

Additional supporting information in the online version of this article (see “Supplementary Material”) contains the following: ESM_1: description of the deglacierization zones, ESM_2 – Photograph of the glacier forefront, ESM_3: Species-area relationship, ESM_4: Species list and species characteristics, ESM_5: Temperature at each zone. ESM_6: Details of the Dirichlet regression presented in Fig. 6 Supplementary file1 (PDF 73 kb)

Supplementary file2 (PNG 2066 kb)

Supplementary file3 (EPS 161 kb)

Supplementary file4 (XLSX 17 kb)

Supplementary file5 (PNG 138 kb)

Supplementary file6 (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anthelme, F., Carrasquer, I., Ceballos, J.L. et al. Novel plant communities after glacial retreat in Colombia: (many) losses and (few) gains. Alp Botany 132, 211–222 (2022). https://doi.org/10.1007/s00035-022-00282-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-022-00282-1

Keywords

Navigation