Skip to main content
Log in

Intraspecific genetic consequences of Pleistocene climate change on Lupinus microphyllus (Fabaceae) in the Andes

  • Original Article
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

The role of Pleistocene climate change in shaping patterns of genetic and species diversity has been widely demonstrated. However, tropical mountains remain less explored. In the northern Andes, distributional shifts of the vegetation during the Pleistocene are believed to have promoted plant diversification. In this regard, the role of gene flow and geographic isolation has been intensively debated. Here, we use a population genetic approach, microsatellite markers, and Bayesian statistics to assess the impact of Pleistocene climate change on intraspecific patterns of gene flow and genetic variation, and on the demographic history of the populations. We study Lupinus microphyllus, which belongs to a clade of Andean Lupinus species that has emerged as a model group in studies of plant diversification. We detect signatures of historical gene flow and negligible contemporary gene flow between populations. We find very low within-population genetic diversity and signals of an ancient decline in population size that may be lasting until today. We conclude that, in spite of periods of increased connectivity and gene flow, intraspecific genetic differentiation is mainly driven by periods of geographic isolation, restricted gene flow, and genetic drift. The intraspecific genetic pattern of high-elevation Andean plant species has been also shaped by local environmental factors, such as volcanic activity or glacier coverage, and by species-specific traits, such as the reproductive and dispersal strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from Carvalho-Mondin et al. (2018). Na effective size of the ancestral population, Nnumber effective size of present population, Nd effective population size during bottleneck, Ne effective population size expansion, tnumber time in generations

Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The supplementary material for this article can be found online.

Code availability

Not applicable.

References

  • Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035

    Article  PubMed  PubMed Central  Google Scholar 

  • Beerli P, Mashayekhi S, Sadeghi M, Khodaei M, Shaw K (2019) Population genetic inference with MIGRATE. Curr Protocol Bioinform 68:e87

    Google Scholar 

  • Berry PE, Calvo RN (1989) Wind pollination, self-incompatibility, and altitudinal shifts in pollination systems in the high Andean genus Espeletia (Asteraceae). Am J Botany 76(11):1602–1614

    Article  Google Scholar 

  • Blondel L, Baillie L, Quinton J, Alemu JB, Paterson I, Hendry AP, Bentzen P (2019) Evidence for contemporary and historical gene flow between guppy populations in different watersheds, with a test for associations with adaptive traits. Ecol Evol 9(8):4504–4517

    Article  PubMed  PubMed Central  Google Scholar 

  • Brochmann C, Gizaw A, Chala D, Kandziora M, Eilu G, Popp M, Pirie MD, Gehrke B (2021) History and evolution of the afroalpine flora: in the footsteps of Olov Hedberg. Alp Botany. https://doi.org/10.1007/s00035-021-00256-9

    Article  Google Scholar 

  • Cadena CD, Pedraza CA, Brumfield RT (2016) Climate, habitat associations and the potential distributions of Neotropical birds: Implications for diversification across the Andes. Revista De La Academia Colombiana De Ciencias Exactas, Físicas y Naturales 40(155):275–287

    Article  Google Scholar 

  • Carson HL, Templeton AR (1984) Genetic revolutions in relation to speciation phenomena: the founding of new populations. Annu Rev Ecol Syst 15:97–131

    Article  Google Scholar 

  • Carvalho-Mondin LA, Machado CB, Resende EKD, Marques DK, Galetti PM Jr (2018) Genetic pattern and demographic history of Salminus brasiliensis: population expansion in the Pantanal Region during the Pleistocene. Front Genet 9:1

    Article  Google Scholar 

  • Charlesworth B (2015) What use is population genetics? Genetics 200:667–669

    Article  PubMed  PubMed Central  Google Scholar 

  • Contreras-Ortiz N, Atchison GW, Hughes CE, Madriňán S (2018) Convergent evolution of high elevation plant growth forms and geographically structured variation in Andean Lupinus (Fabaceae). Bot J Linn Soc 187(1):118–136

    Article  Google Scholar 

  • Cornuet JM, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R et al (2014) DIYABC v2. 0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism. DNA Sequence Microsatellite Data Bioinform 30:1187–1189

    CAS  Google Scholar 

  • Cortés AJ, Garzón LN, Valencia JB, Madriñán S (2018) On the causes of rapid diversification in the Páramos: isolation by ecology and genomic divergence in Espeletia. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01700

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuatrecasas J (1968) Páramo vegetation and its life-forms. In: Troll C (ed) Geoecology of mountainous regions of the tropical. America Colloquium geographicum 9. Geographisches Institut, Bonn, pp 163–186

    Google Scholar 

  • Drummond CS, Hamilton MB (2005) Isolation and characterization of nuclear microsatellite loci in Lupinus group Microcarpi (Leguminosae). Mol Ecol Notes 5:510–513

    Article  CAS  Google Scholar 

  • Drummond CS, Eastwood RJ, Miotto ST, Hughes CE (2012) Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): testing for key innovation with incomplete taxon sampling. Syst Biol 61:443–460

    Article  PubMed  PubMed Central  Google Scholar 

  • Dušková E, Sklenář P, Kolář F, Vásquez DLA, Romoleroux K, Fér T, Marhold K (2017) Growth form evolution and hybridization in Senecio (Asteraceae) from the high equatorial Andes. Ecol Evol 7:6455–6468. https://doi.org/10.1002/ece3.3206

    Article  PubMed  PubMed Central  Google Scholar 

  • Ehrich D, Gaudeul M, Assefa A, Koch MA, Mummenhoff K, Nemomissa S, Brochmann C (2007) Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Mol Ecol 16:2542–2559. https://doi.org/10.1111/j.1365-294X.2007.03299.x

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Flantua SGA, Hooghiemstra H (2018) Historical connectivity and mountain biodiversity. In: Hoorn C, Perrigo A, Antonelli A (eds) Mountains, climate and biodiversity, 1st edn. Wiley-Blackwell, Oxford, pp 171–185

    Google Scholar 

  • Flantua SG, O’Dea A, Onstein RE, Giraldo C, Hooghiemstra H (2019) The flickering connectivity system of the north Andean páramos. J Biogeogr 46(8):1808–1825

    Article  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DB, Linares AR, Cavalli-Sforza LL, Feldman MW (1995) An evaluation of genetic distances for use with microsatellite loci. Genetics 139:463–471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goudet J (2003) Fstat (ver. 2.9.4), a program to estimate and test population genetics parameters. Available from http://www.unil.ch/izea/softwares/fstat.html. Updated from Goudet (1995)

  • Groot MHM, Bogotá RG, Lourens LJ, Hooghiemstra H, Vriend M, Berrio JC et al (2011) Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles. Clim past 7(1):299–316

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc B 351:1291–1298

    Article  Google Scholar 

  • Hansen BD, Taylor AC (2008) Isolated remnant or recent introduction? Estimating the provenance of Yellingbo Leadbeater’s possums by genetic analysis and bottleneck simulation. Mol Ecol 17:4039–4052

    Article  PubMed  Google Scholar 

  • Hazzi NA, Moreno JS, Ortiz-Movliav C, Palacio RD (2018) Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. Proc Natl Acad Sci 115(31):7985–7990. https://doi.org/10.1073/pnas.1803908115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hensen I, Cierjacks A, Hirsch H, Kessler M, Romoleroux K, Renison D, Wesche K (2012) Historic and recent fragmentation coupled with altitude affect the genetic population structure of one of the world’s highest tropical tree line species. Glob Ecol Biogeogr 21:455–464

    Article  Google Scholar 

  • Hooghiemstra H, van der Hammen T (2004) Quaternary Ice-Age dynamics in the Colombian Andes: developing an understanding of our legacy. Philos Trans R Soc B 359:173–181

    Article  Google Scholar 

  • Hughes C, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci USA 103:10334–10339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. https://doi.org/10.1093/bioinformatics/btn129

    Article  PubMed  CAS  Google Scholar 

  • Kolář F, Dušková E, Sklenář P (2016) Niche shifts and range expansions along cordilleras drove diversification in a high-elevation endemic plant genus in the tropical Andes. Mol Ecol 25(18):4593–4610. https://doi.org/10.1111/mec.13788

    Article  PubMed  CAS  Google Scholar 

  • Madriñán S, Cortés AJ, Richardson JE (2013) Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Front Genet 4:1808–1817

    Article  Google Scholar 

  • Molecular Ecology Resources Primer Development Consortium, Abreu AG, Albaina A, Alpermann TJ, Apkenas VE et al (2012) Permanent genetic resources added to molecular ecology resources database 1 October 2011–30 November 2011. Mol Ecol Resour 12:374–376

    Article  PubMed Central  CAS  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  PubMed  CAS  Google Scholar 

  • Nevado B, Contreras-Ortiz N, Hughes C, Filatov DA (2018) Pleistocene glacial cycles drive isolation, gene flow and speciation in the high elevation Andes. New Phytol 219(2):779–793

    Article  PubMed  Google Scholar 

  • Nordborg M, Donnelly P (1997) The coalescent process with selfing. Genetics 146:1185–1195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nürk NM, Scheriau C, Madriñán S (2013) Explosive radiation in high Andean Hypericum—rates of diversification among New World lineages. Front Genet 4:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pouchon C, Fernández A, Nassar JM, Boyer F, Aubert S, Lavergne S et al (2018) Phylogenomic analysis of the explosive adaptive radiation of the Espeletia complex (Asteraceae) in the Tropical Andes. Syst Biol 67(6):1041–1060. https://doi.org/10.1093/sysbio/syy022

    Article  PubMed  CAS  Google Scholar 

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramírez-Barahona S, Eguiarte LE (2013) The role of glacial cycles in promoting genetic diversity in the Neotropics: the case of cloud forests during the Last Glacial Maximum. Ecol Evol 3(3):725–738. https://doi.org/10.1002/ece3.483

    Article  PubMed  PubMed Central  Google Scholar 

  • Rull V (2005) Biotic diversification in the Guayana Highlands: a proposal. J Biogeogr 32(6):921–927. https://doi.org/10.1111/j.1365-2699.2005.01252.x

    Article  Google Scholar 

  • Sgorbati S, Labra M, Grugni E, Barcaccia G, Galasso G, Boni U et al (2004) A survey of genetic diversity and reproductive biology of Puya raimondii (Bromeliaceae), the endangered queen of the Andes. Plant Biol 6:222–230

    Article  PubMed  CAS  Google Scholar 

  • Simpson BB (1974) Glacial migrations of plants: island biogeographic evidence. Science 185:698–700

    Article  PubMed  CAS  Google Scholar 

  • Sklenář P, Duškova E, Balslev H (2011) Tropical and temperate: evolutionary history of páramo flora. Bot Rev 2:71–108

    Article  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. Proc R Soc Lond B 277:661–671

    Google Scholar 

  • Stöcklin J, Kuss P, Pluess AR (2009) Genetic diversity, phenotypic variation and local adaptation in the alpine landscape: case studies with alpine plant species. Bot Helv 119:125–133

    Article  Google Scholar 

  • Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144(1):389–399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takezaki N, Nei M, Tamura K (2014) POPTREEW: web version of POPTREE for constructing population trees from allele frequency data and computing other population statistics. Mol Biol Evol 31:1622–1624

    Article  PubMed  CAS  Google Scholar 

  • van der Hammen T, Cleef AM (1986) Development of the high Andean páramo flora and vegetation. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, Oxford, pp 153–201

    Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Vásquez DLA, Balslev H, Hansen MM, Sklenář P (2016) Low genetic variation and high differentiation across sky island populations of Lupinus alopecuroides (Fabaceae) in the northern Andes. Alp Botany 126:135–142

    Article  Google Scholar 

  • Vargas OM, Ortiz EM, Simpson BB (2017) Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: Diplostephium). New Phytol 214(4):1736–1750. https://doi.org/10.1111/nph.14530

    Article  PubMed  CAS  Google Scholar 

  • Voillemot M, Rougemont Q, Roux C, Pannell JR (2018) The divergence history of the perennial plant Linaria cavanillesii confirms a recent loss of self-incompatibility. J Evol Biol 31(1):136–147

    Article  PubMed  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    PubMed  CAS  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    Article  PubMed  PubMed Central  Google Scholar 

  • Zorrilla-Azcué S, González- Rodríguez A, Oyama K, González MA, Rodríguez- Correa H (2021) The DNA history of a lonely oak: quercus humboldtii phylogeography in the Colombian Andes. Ecol Evol 11:6814–6828

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to Lenka Flašková for laboratory assistance, and to Jan Brotánek and José David Vásquez for help with fieldwork. Also, thanks to Guillaume Wos for helpful discussions and to three anonymous reviewers for very constructive comments. Diana L. A. Vásquez thanks her mom for taking care of her children while she was working on this manuscript.

Funding

This study was funded by the Czech Science Foundation (project 206/07/0273 and project 20-10878S) and the long-term research development project No. RVO 67985939 of the Czech Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

The conception and design of the study was led by DLAV, with remarkable support from HB and RS. The collection of plant material and the laboratory work were performed by DLAV. The statistical analyses were done by DLAV and MMH. The first draft of the manuscript was written by DLAV and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Diana L. A. Vásquez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 757 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vásquez, D.L.A., Hansen, M.M., Balslev, H. et al. Intraspecific genetic consequences of Pleistocene climate change on Lupinus microphyllus (Fabaceae) in the Andes. Alp Botany 132, 273–284 (2022). https://doi.org/10.1007/s00035-022-00276-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-022-00276-z

Keywords

Navigation