Skip to main content
Log in

Positive Real Lemmas for Fractional-Order Two-Dimensional Roesser Model: The \(0< \rho _1\le 1,0<\rho _2\le 1\) Case

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper investigates the positive realness of continuous fractional-order (FO) two-dimensional (2D) Roesser model with the FO \(\rho _1\in (0,1],\rho _2\in (0,1]\). A sufficient condition that ensures that the continuous FO 2D Roesser model is stable and positive real is given as linear matrix inequalities (LMIs). Then, the positive real control problem for continuous FO 2D Roesser model with state feedback and dynamic output feedback controllers is addressed. The sufficient conditions are given in LMI form, and the parameters of the controllers can be achieved from the solution of the LMIs easily. Finally, the validity of the results is checked by several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are included in this article.

References

  1. E.D. Andersen, K.D. Andersen, The Mosek interior point optimizer for linear programming: an implementation of the homogeneous algorithm, in High Performance Optimization. ed. by H. Frenk, K. Roos, T. Terlaky, S. Zhang (Springer, New York, 2000), pp.197–232

    Chapter  Google Scholar 

  2. L. Angel, J. Viola, Fractional order PID for tracking control of a parallel robotic manipulator type delta. ISA Trans. 79, 172–188 (2018)

    Article  CAS  PubMed  Google Scholar 

  3. H. Arfaoui, A. Ben Makhlouf, Some results for a class of two-dimensional fractional hyperbolic differential systems with time delay. J. Appl. Math. Comput. 68, 2389–2405 (2022)

    Article  MathSciNet  PubMed  Google Scholar 

  4. O. Bachelier, P. Dabkowski, K. Galkowski, A. Kummert, Fractional and nD systems: a continuous case. Multidimens. Syst. Signal Process. 23, 329–347 (2012)

    Article  MathSciNet  Google Scholar 

  5. O. Bachelier, W. Paszke, D. Mehdi, On the Kalman–Yakubovich–Popov lemma and the multidimensional models. Multidimens. Syst. Signal Process. 19, 425–447 (2008)

    Article  MathSciNet  Google Scholar 

  6. D. Bian, J. Mao, Stability and large time behavior for the 2D BMHD system with partial dissipation and thermal damping. J. Math. Anal. Appl. 517, 126571 (2023)

    Article  MathSciNet  Google Scholar 

  7. N.K. Bose, Applied Multidimensional Systems Theory (Springer, New York, 2017)

    Book  Google Scholar 

  8. L. Dami, M. Benhayoun, A. Benzaouia, Stabilization of positive 2D fractional-order continuous-time systems with delays. Circuits Syst. Signal Process. 38, 1962–1981 (2019)

    Article  MathSciNet  Google Scholar 

  9. Y. Ebihara, Y. Ito, T. Hagiwara, Exact stability analysis of 2-D systems using LMIs. IEEE Trans. Autom. Control 51, 1509–1513 (2006)

    Article  MathSciNet  Google Scholar 

  10. C. El-Kasri, A. Hmamed, F. Tadeo, Reduced-order \({H}_\infty \) filters for uncertain 2-D continuous systems, via LMIs and polynomial matrices. Circuits Syst. Signal Process. 33, 1190–1214 (2014)

    Article  MathSciNet  Google Scholar 

  11. E. Fornasini, G. Marchesini, State-space realization theory of two-dimensional filters. IEEE Trans. Autom. Control 21, 484–492 (1976)

    Article  MathSciNet  Google Scholar 

  12. E. Fornasini, G. Marchesini, Doubly-indexed dynamical systems: state-space models and structural properties. Math. Syst. Theory 12, 59–72 (1978)

    Article  MathSciNet  Google Scholar 

  13. E. Fornasini, G. Marchesini, Stability analysis of 2-D systems. IEEE Trans. Circuits Syst. 27, 1210–1217 (1980)

    Article  Google Scholar 

  14. J. Fu, Z. Duan, Z. Xiang, On mixed \(\ell _1/\ell _-\) fault detection observer design for positive 2D Roesser systems: necessary and sufficient conditions. J. Frankl. Inst. 359, 160–177 (2022)

    Article  MathSciNet  Google Scholar 

  15. P. Gahinet, P. Apkarian, A linear matrix inequality approach to \({H}_\infty \) control. Int. J. Robust Nonlinear Contol 4, 421–448 (1994)

    Article  MathSciNet  Google Scholar 

  16. K. Galkowski, W. Paszke, B. Sulikowski, E. Rogers, S. Xu, J. Lam, Z. Lin, D. Owens, Positive realness and the analysis of a class of 2D linear systems. IFAC Proc. Vol. 35, 219–224 (2002)

    Article  Google Scholar 

  17. L. Gaul, P. Klein, S. Kemple, Damping description involving fractional operators. Mech. Syst. Signal Process. 5, 81–88 (1991)

    Article  ADS  Google Scholar 

  18. J. Heikkinen, G.S. Schajer, Perspective error reduction in 2D digital image correlation measurements by combination with defocused speckle imaging. Opt. Lasers Eng. 149, 106820 (2022)

    Article  Google Scholar 

  19. T. Huang, Stability of two-dimensional recursive filters. IEEE Trans. Audio Electroacoust. 20, 158–163 (1972)

    Article  MathSciNet  Google Scholar 

  20. Y. Jiang, B. Zhang, X. Shu, Z. Wei, Fractional-order autonomous circuits with order larger than one. J. Adv. Res. 25, 217–225 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  21. T. Kaczorek, K. Rogowski, Positivity and stabilization of fractional 2D linear systems described by the Roesser model. Int. J. Appl. Math. Comput. Sci. 20, 85–92 (2010)

    Article  MathSciNet  Google Scholar 

  22. V.K.R. Kandanvli, H. Kar, Global asymptotic stability of 2-D digital filters with a saturation operator on the state-space. IEEE Trans. Circuits Syst. II Express Briefs 67, 2742–2746 (2020)

    Google Scholar 

  23. D. Li, J. Liang, F. Wang, \({H}_\infty \) state estimation for two-dimensional systems with randomly occurring uncertainties and round-robin protocol. Neurocomputing 349, 248–260 (2019)

    Article  Google Scholar 

  24. Y. Li, Y. Wei, Y. Chen, Y. Wang, A universal framework of the generalized Kalman–Yakubovich–Popov lemma for singular fractional-order systems. IEEE Trans. Syst. Man Cybern. 51, 5209–5217 (2021)

    Article  Google Scholar 

  25. H. Liu, G. Xie, M. Yu, Necessary and sufficient conditions for containment control of fractional-order multi-agent systems. Neurocomputing 323, 86–95 (2019)

    Article  Google Scholar 

  26. B. Mandelbrot, Some noises with \(1/f\) spectrum, a bridge between direct current and white noise. IEEE Trans. Inf. Theory 13, 289–298 (1967)

    Article  Google Scholar 

  27. D. Matignon, Stability results for fractional differential equations with applications to control processing. Comput. Eng. Syst. Appl. 2, 963–968 (1996)

    Google Scholar 

  28. I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)

    Google Scholar 

  29. M. Reyes-Melo, J. Martinez-Vega, C. Guerrero-Salazar, U. Ortiz-Mendez, Application of fractional calculus to modelling of relaxation phenomena of organic dielectric materials, in IEEE International Conference on Solid Dielectrics, Toulouse, France (IEEE, 2004), pp. 530–533

  30. R. Roesser, A discrete state-space model for linear image processing. IEEE Trans. Autom. Control 20, 1–10 (1975)

    Article  MathSciNet  Google Scholar 

  31. K. Rogowski, Solution to the fractional-order 2D continuous systems described by the second Fornasini–Marchesini model. IFAC-PapersOnLine 50, 9748–9752 (2017)

    Article  Google Scholar 

  32. E. Sellwood, M. Kook, M. Jain, A 2D imaging system for mapping luminescence-depth profiles for rock surface dating. Radiat. Meas. 150, 106697 (2022)

    Article  CAS  Google Scholar 

  33. V. Singh, Stability analysis of 2-D linear discrete systems based on the Fornasini–Marchesini second model: stability with asymmetric Lyapunov matrix. Digital Signal Process. 26, 183–186 (2014)

    Article  Google Scholar 

  34. M.G.B. Sumanasena, P.H. Bauer, Realization using the Fornasini–Marchesini model for implementations in distributed grid sensor networks. IEEE Trans. Circuits Syst. I Regul. Pap. 58, 2708–2717 (2011)

    Article  MathSciNet  Google Scholar 

  35. F. Wang, Z. Wang, J. Liang, C. Silvestre, Recursive locally minimum-variance filtering for two-dimensional systems: when dynamic quantization effect meets random sensor failure. Automatica 148, 110762 (2023)

    Article  MathSciNet  Google Scholar 

  36. L. Wang, J. Yu, P. Li, H. Li, R. Zhang, A 2D-FM model-based robust iterative learning model predictive control for batch processes. ISA Trans. 110, 271–282 (2021)

    Article  PubMed  Google Scholar 

  37. Z. Xi, Y. Wei, L. Shu, W. Yong, Positive real lemmas for fractional order systems, in 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA (IEEE, 2014), pp. 6914–6919

  38. H. Xu, Y. Zou, J. Lu, S. Xu, Robust \({H}_\infty \) control for a class of uncertain nonlinear two-dimensional systems with state delays. J. Frankl. Inst. 342, 877–891 (2005)

    Article  MathSciNet  Google Scholar 

  39. L. Xu, O. Saito, K. Abe, Output feedback stabilizability and stabilization algorithms for 2D systems. Multidimens. Syst. Signal Process. 5, 41–60 (1994)

    Article  Google Scholar 

  40. S. Xu, J. Lam, Y. Zou, Z. Lin, W. Paszke, Robust positive real synthesis for 2D continuous systems via state and output feedback. Circuits Syst. Signal Process. 24, 183–199 (2004)

    Article  MathSciNet  Google Scholar 

  41. H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075–1081 (2007)

    Article  MathSciNet  Google Scholar 

  42. J.-R. Zhang, J.-G. Lu, Z. Zhu, Stability analysis and stabilisation of continuous-discrete fractional-order 2D Fornasini–Marchesini first model. Int. J. Syst. Sci. 54, 333–344 (2023)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  43. Z. Zhu, J.-G. Lu, Robust stability and stabilization of hybrid fractional-order multi-dimensional systems with interval uncertainties: an LMI approach. Appl. Math. Comput. 401, 126075 (2021)

    MathSciNet  Google Scholar 

  44. Z. Zhu, J.-G. Lu, LMI-based stability conditions for continuous fractional-order two-dimensional Fornasini–Marchesini first model. IEEE Trans. Circuits Syst. II Express Briefs 69, 1312–1316 (2022)

    Google Scholar 

  45. Z. Zhu, J.-G. Lu, Q.-H. Zhang, LMI-based stability analysis of continuous-discrete fractional-order 2D Roesser model. IEEE Trans. Circuits Syst. II Express Briefs 69, 2797–2801 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under Grants 62073217.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Guo Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JR., Lu, JG. Positive Real Lemmas for Fractional-Order Two-Dimensional Roesser Model: The \(0< \rho _1\le 1,0<\rho _2\le 1\) Case. Circuits Syst Signal Process 43, 2073–2094 (2024). https://doi.org/10.1007/s00034-023-02560-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02560-7

Keywords

Navigation