Skip to main content
Log in

Fractional and nD systems: a continuous case

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In the paper, a possibility of employing the 2D, and more generally nD systems approach for the analysis of linear fractional degree systems for the introduced here, so-called n-commensurate transfer functions is shown. This approach induces a significant reduction of an overall problem dimensionality and gives interesting insights for stability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn H., Chen Y., Podlubny I. (2007) Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality. Applied Mathematics and Computation 187(1): 27–34. doi:10.1016/j.amc.2006.08.099

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd S., Ghaoui L. E., Feron E., Balakrishnan V. (1994) Linear matrix inequalities in system and control theory, vol 15 of SIAM studies in applied mathematics. SIAM, Philadelphia

    Book  Google Scholar 

  • Chen Y., Ahn H., Xue D. (2006a) Robust controllability of interval fractional order linear time invariant systems. Signal Processing 86(10): 2794–2802. doi:10.1016/j.sigpro.2006.02.021

    Article  MATH  Google Scholar 

  • Chen Y., Ahn H., Podlubny I. (2006b) Robust stability check of fractional order linear time invariant systems with interval uncertainties. Signal Processing 86(10): 2611–2618

    Article  MATH  Google Scholar 

  • Chilali M., Gahinet P. (1996) H design with pole placement constraints: An LMI approach. IEEE Transactions on Automatic Control 41(3): 358–366

    Article  MathSciNet  MATH  Google Scholar 

  • Concepcion, A. M., YangQuan, C., Vinagre, B. M., Xue, D., & Feliu, V. (2010). Fractional-order systems and control fundamentals and applications. Advances in Industrial Control. doi:10.1007/978-1-84996-335-0.

  • Deng T., Nakagawa Y. (2004) SVD-based design and new structures for variable fractional-delay digital filters. IEEE Transaction on Signal Processing 52(9): 2513–2527

    Article  MathSciNet  Google Scholar 

  • Finsler P. (1937) Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen: Comment. Mathematics Helvetica 9: 188–192

    Article  MathSciNet  Google Scholar 

  • Galkowski, K., & Kummert, A. (2005). Fractional polynomials and nD systems. ISCAS 2005 May 2005, Kobe, Japan.

  • Galkowski K. (2002) State-space realizations of linear 2-D systems with extensions to the general nD (n > 2) case vol 263 of lecture notes in control and information sciences. Springer, London

    Google Scholar 

  • Hyo-Sung A., YangQuan C. (2008) Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica 44(11): 2985–2988

    Article  MathSciNet  MATH  Google Scholar 

  • Iwasaki T., Hara S. (2005) Generalized KYP lemma: Unified frequency domain inequalities with design applications. IEEE Transactions on Automatic Control 50(1): 41–59

    Article  MathSciNet  Google Scholar 

  • Kaczorek T. (2009) Reachability of cone fractional continuous-time linear systems. International Journal of Application Mathematical Computationl Science 19(1): 89–93

    MathSciNet  MATH  Google Scholar 

  • Matignon, D. (1996). Stability results on fractional differential equations with applications to control processing. IMACS, IEEE-SMC 1996. Lille-France, July.

  • Miller K. S., Ross B. (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    MATH  Google Scholar 

  • Oustaloup A. (1995) La derivation non entiere. Hermes, Paris

    MATH  Google Scholar 

  • Podlubny I., Dorcak L., Misanek J. (1995) Application of fractional—Order derivatives to calculation of heat load intensity change in blast furnace walls. Transactions of Technology University of Kosice 5: 137–144

    Google Scholar 

  • Roesser R. (1975) A discrete state space model for linear image processing. IEEE Transaction on Automatic Control 20: 1–10

    Article  MathSciNet  MATH  Google Scholar 

  • Sari, B., Bachelier, O., & Mehdi, D. (2008). A S-regularity approach to the analysis of descriptor models. Proceedings of IEEE conference on decision and control (CDC’2008). Cancun, Mexico, December.

  • Scherer C. W. (2001) LPV control and full block multipliers. Automatica 37: 361–375

    Article  MathSciNet  MATH  Google Scholar 

  • Skelton R. E., Iwasaki T., Grigoriadis K. (1997) A unified approach to linear control design. Taylor and Francis, London

    Google Scholar 

  • Tenreiro Machado J. A. (2001) Discrete-time fractional-order controllers. FCAA Journal of Fractional Calculus and Applied Analysis 4(1): 47–66

    MathSciNet  MATH  Google Scholar 

  • Vinagre B.M., Petras I., Podlubny I., Chen Y.Q. (2002) Using fractional-order adjustment rules and fractional order reference models in model reference adaptive control. Annals of International Journal of Nonlinear Dynamics and Chaos in Engineering Systems 27(6): 269–279

    MathSciNet  Google Scholar 

  • Xu L., Fan H., Lin Z., Bose N. K. (2008) A direct–Construction approach to multidimensional realization and LFR uncertainty modelling. Multidimensional Systems and Signal Processing 19(3–4): 323–359

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Dabkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachelier, O., Dabkowski, P., Galkowski, K. et al. Fractional and nD systems: a continuous case. Multidim Syst Sign Process 23, 329–347 (2012). https://doi.org/10.1007/s11045-011-0149-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-011-0149-0

Keywords

Navigation