Skip to main content
Log in

Design of Fractional-Order Chebyshev Low-Pass Filter for Optimized Magnitude Response Using Metaheuristic Evolutionary Algorithms

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The research work presented in this paper discusses the traditional methods of design of fractional-order filters and their shortcomings and proposes a method of deriving the physically realizable Chebyshev low-pass fractional-order filters of order (\(1+\alpha \)) which produce an optimum magnitude response. The filters of (\(1+\alpha \)) order are derived in terms of a rational transfer function of order \(N=3\). The proposed method utilizes different nature-inspired evolutionary metaheuristic algorithms which traverse the non-uniform, multidimensional, multimodal, nonlinear space and produce the coefficients of the polynomial for desired filters effectively. Comparisons are made between the reported literature and presented work on various key factors like robustness and magnitude errors in stopband and passband. It has been observed that the proposed work outperforms the work reported in the literature with minimum and maximum errors being \(-\) 58.9 dB and \(-\) 31.46 dB. SPICE implementations of the proposed filters by operational amplifiers (Op-Amps) and operational transconductance amplifiers (OTAs) have been shown. It is observed that the implemented filters closely follow the magnitude curve of ideal filters with a mean square errors of \(-\) 74.97 dB and \(-\) 70.94 dB for 1.5-order and \(-\) 69.81 dB and \(-\) 86.13 dB for 1.7-order filters for Op-Amp and OTA-based filters, respectively. This justifies the feasibility and accuracy of the proposed filters in practical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data sets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. A.M. AbdelAty, A. Soltan, W.A. Ahmed, A.G. Radwan, Fractional order Chebyshev-like low-pass filters based on integer order poles. Microelectron. J. 90, 72–81 (2019)

    Google Scholar 

  2. A.M. AbdelAty, A. Soltan, W.A. Ahmed, A.G. Radwan, On the analysis and design of fractional-order Chebyshev complex filter. Circuits Syst. Signal Process. 37, 915–938 (2018)

    MathSciNet  MATH  Google Scholar 

  3. A.M. AbdelAty, A. Soltan, W.A. Ahmed, A.G. Radwan, Low pass filter design based on fractional power chebyshev polynomial, in 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS) (2015), pp. 9–12

  4. F. Abdelliche, A. Charef, R-Peak Detection Using a Complex Fractional Wavelet

  5. A. Adhikary, M. Khanra, S. Sen, K. Biswas, Realization of a carbon nanotube based electrochemical fractor, in 2015 IEEE International Symposium on Circuits and Systems (ISCAS) (2015), pp. 2329–2332

  6. A. Adhikary, S. Sen, K. Biswas, Practical realization of tunable fractional order parallel resonator and fractional order filters. IEEE Trans. Circuits I Syst. Regul. Pap. 63, 1142–1151 (2016)

    MathSciNet  MATH  Google Scholar 

  7. A.S. Ali, A.G. Radwan, A.M. Soliman, Fractional order Butterworth filter: active and passive realizations. IEEE J. Emerg. Sel. Top. Circuits Syst. 3, 346–354 (2013)

    Google Scholar 

  8. A.T. Azar, A.G. Radwan, S. Vaidyanathan, Fractional Order Systems: Optimization, Control, Circuit Realizations and Applications (Academic Press, 2018)

    Google Scholar 

  9. P. Bertsias, S. Kapoulea, C. Psychalinos, A.S. Elwakil, A collection of interdisciplinary applications of fractional-order circuits, in Fractional Order Systems (Elsevier, 2022), pp. 35–69

  10. K. Biswas, S. Sen, P.K. Dutta, Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Trans. Circuits Syst. II Express Briefs 53, 802–806 (2006)

    Google Scholar 

  11. R. Caponetto, G. Dongola, L. Fortuna, I. Petras, Fractional order systems, in Modeling and Control Applications. World Scientific Series on Nonlinear Science vol. Series A (2010)

  12. R. Caponetto, S. Graziani, E. Murgano, Realization of a fractional-order RLC circuit via constant phase element. Int. J. Dyn. Control 9, 1589–1599 (2021)

    Google Scholar 

  13. A. Charef, Analogue realisation of fractional-order integrator, differentiator and fractional PI\(\lambda \)D\(\mu \) controller. IEE Proc. Control Theory Appl. 153, 714–720 (2006)

    Google Scholar 

  14. M.S. Chavan, R.A. Agarwala, M.D. Uplane, Comparative study of Chebyshev I and Chebyshev II filter used for noise reduction in ECG signal. Int. J. Circuits Syst. Signal Process. 2, 1–17 (2008)

    MATH  Google Scholar 

  15. M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)

    Google Scholar 

  16. C.A.C. Coello, Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191, 1245–1287 (2002)

    MathSciNet  MATH  Google Scholar 

  17. R. Daryani, B. Aggarwal, Designing of tunable fractional order Chebyshev low pass filter using particle swarm optimization. Lect. Notes Mech. Eng

  18. R.C. Eberhart, Y. Shi, J. Kennedy, Swarm Intelligence (Elsevier, 2001)

    Google Scholar 

  19. A.M. Elshurafa, M.N. Almadhoun, K.N. Salama, H.N. Alshareef, Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites. Appl. Phys. Lett. 102, 232901 (2013)

    Google Scholar 

  20. A.S. Elwakil, Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE Circuits Syst. Mag. 10, 40–50 (2010)

    Google Scholar 

  21. G. Fedele, A. Ferrise, Periodic disturbance rejection for fractional-order dynamical systems. Fract. Calc. Appl. Anal. 18, 603–620 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Y. Ferdi, Fractional order calculus-based filters for biomedical signal processing, in 2011 1st Middle East Conference on Biomedical Engineering (2011), pp. 73–76

  23. T.J. Freeborn, B. Maundy, A.S. Elwakil, Field programmable analogue array implementation of fractional step filters. IET Circuits Dev. Syst. 4, 514–524 (2010)

    Google Scholar 

  24. T.J. Freeborn, Comparison of \((1+\alpha )\) fractional-order transfer functions to approximate lowpass Butterworth magnitude responses. Circuits Syst. Signal Process. 35, 1983–2002 (2016)

    MathSciNet  Google Scholar 

  25. T.J. Freeborn, A.S. Elwakil, B. Maundy, Approximated fractional-order inverse Chebyshev lowpass filters. Circuits Syst. Signal Process. 35, 1973–1982 (2016)

    MathSciNet  MATH  Google Scholar 

  26. T.J. Freeborn, B. Maundy, A. Elwakil, Towards the realization of fractional step filters, in Proceedings of 2010 IEEE International Symposium on Circuits and Systems (2010), pp. 1037–1040

  27. T. Freeborn, B. Maundy, A.S. Elwakil, Approximated fractional order Chebyshev lowpass filters. Math. Probl. Eng. 2015, 4–11 (2015)

    MATH  Google Scholar 

  28. D.E. Goldberg, Genetic Algorithms (Pearson Education India, 2013)

    Google Scholar 

  29. R.E. Gutiérrez, J.M. Rosário, Tenreiro Machado, J. Fractional order calculus: basic concepts and engineering applications. Math. Probl. Eng. 2010 (2010)

  30. T.C. Haba, G.L. Loum, J.T. Zoueu, G. Ablart, Use of a component with fractional impedance in the realization of an analogical regulator of order 1/2. J. Appl. Sci. 8, 59–67 (2008)

    Google Scholar 

  31. X. He, Z. Hu, Optimization design of fractional-order Chebyshev lowpass filters based on genetic algorithm. Int. J. Circuit Theory Appl. 50, 1420–1441 (2022)

    Google Scholar 

  32. S.K. Jagtap, M.D. Uplane, A real time approach: Ecg noise reduction in Chebyshev type II digital filter. Int. J. Comput. Appl. 49, 9 (2012)

    Google Scholar 

  33. I.S. Jesus, J.A.T. Machado, Fractional control of heat diffusion systems. Nonlinear Dyn. 54, 263–282 (2008)

    MathSciNet  MATH  Google Scholar 

  34. S. Kapoulea, C. Psychalinos, A.S. Elwakil, Fractional-order shelving filter designs for acoustic applications, in 2020 IEEE International Symposium on Circuits and Systems (ISCAS) (2020), pp. 1–5

  35. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN’95-International Conference on Neural Networks vol. 4 (1995), pp. 1942–1948

  36. M.S. Krishna et al., Fabrication of a fractional order capacitor with desired specifications: a study on process identification and characterization. IEEE Trans. Electron Dev. 58, 4067–4073 (2011)

    Google Scholar 

  37. D. Kubanek, T.J. Freeborn, J.K. Dvorak, J. Dvorak, Transfer functions of fractional-order band-pass filter with arbitrary magnitude slope in stopband, in 2019 42nd International Conference on Telecommunications and Signal Processing (TSP) (2019), pp. 655-659

  38. D. Kubanek, T.J. Freeborn, J. Koton, J. Dvorak, Validation of fractional-order lowpass elliptic responses of (1+ o)-order analog filters, in Selected Papers from the 2018 41st International Conference on Telecommunications and Signal Processing (TSP) (2019), p. 56

  39. E.K. Lenzi, M.A.F. dos Santos, M.K. Lenzi, D.S. Vieira, L.R. da Silva, Solutions for a fractional diffusion equation: anomalous diffusion and adsorption–desorption processes. J. King Saud Univ. 28, 3–6 (2016)

    Google Scholar 

  40. R. Lerner, The design of a constant-angle or power-law magnitude impedance. IEEE Trans. Circuit Theory 10, 98–107 (1963)

    Google Scholar 

  41. S. Mahata, S. Banerjee, R. Kar, D. Mandal, Revisiting the use of squared magnitude function for the optimal approximation of (1+ \(\alpha \))-order Butterworth filter. AEU Int. J. Electron. Commun. 110, 152826 (2019)

    Google Scholar 

  42. S. Mahata, S.K. Saha, R. Kar, D. Mandal, Optimal design of fractional order low pass Butterworth filter with accurate magnitude response. Digit. Signal Process. 72, 96–114 (2018)

    Google Scholar 

  43. S. Mahata, S.K. Saha, R. Kar, D. Mandal, Optimal design of wideband infinite impulse response fractional order digital integrators using colliding bodies optimisation algorithm. IET Signal Process. 10, 1135–1156 (2016)

    Google Scholar 

  44. B. Maundy, A.S. Elwakil, T.J. Freeborn, On the practical realization of higher-order filters with fractional stepping. Signal Process. 91, 484–491 (2011)

    MATH  Google Scholar 

  45. K. Michalak, Evolutionary algorithm with a directional local search for multiobjective optimization in combinatorial problems, in Proceedings of the Genetic and Evolutionary Computation Conference Companion (2017), pp. 7–8

  46. K. Moaddy, A.G. Radwan, K.N. Salama, S. Momani, I. Hashim, The fractional-order modeling and synchronization of electrically coupled neuron systems. Comput. Math. Appl. 64, 3329–3339 (2012)

    MathSciNet  MATH  Google Scholar 

  47. A.S. Mohapatra, D.A. John, K. Biswas, A review on the realization of fractional-order devices to use as sensors and circuit elements for experimental studies and research. Fract. Order Syst. Overv. Math. Des. Appl. Eng. 8, 9 (2022). https://doi.org/10.1016/B978-0-12-824293-3.00012-0

    Article  Google Scholar 

  48. M.D. Ortigueira, J.T. Machado, The 21st century systems: an updated vision of continuous-time fractional models. IEEE Circuits Syst. Mag. 22, 36–56 (2022)

    Google Scholar 

  49. I. Podlubny, I. Petráš, B.M. Vinagre, P. O’Leary, L. Dorčák, Analogue realizations of fractional-order controllers. Nonlinear Dyn. 29, 281–296 (2002)

    MathSciNet  MATH  Google Scholar 

  50. C. Psychalinos, G. Tsirimokou, A.S. Elwakil, Switched-capacitor fractional-step Butterworth filter design. Circuits Syst. Signal Process. 35, 1377–1393 (2016)

    MathSciNet  Google Scholar 

  51. A.G. Radwan, A.S. Elwakil, A.M. Soliman, Fractional-order sinusoidal oscillators: design procedure and practical examples. IEEE Trans. Circuits Syst. I Regul. Pap. 55, 2051–2063 (2008)

    MathSciNet  MATH  Google Scholar 

  52. A.G. Radwan, A.S. Elwakil, A.M. Soliman, On the generalization of second-order filters to the fractional-order domain. J. Circuits Syst. Comput. 18, 361–386 (2009)

    Google Scholar 

  53. A.G. Radwan, K.N. Salama, Fractional-order RC and RL circuits. Circuits Syst. Signal Process. 31, 1901–1915 (2012)

    MathSciNet  Google Scholar 

  54. A.G. Radwan, A.M. Soliman, A.S. Elwakil, A. Sedeek, On the stability of linear systems with fractional-order elements. Chaos Solitons Fractals 40, 2317–2328 (2009)

    MATH  Google Scholar 

  55. A.G. Radwan, A.M. Soliman, A.S. Elwakil, First-order filters generalized to the fractional domain. J. Circuits Syst. Comput. 17, 55–66 (2008)

    Google Scholar 

  56. A.G. Radwan, Resonance and quality factor of the \( RL_{\alpha }C_{\alpha }\) fractional circuit. IEEE J. Emerg. Sel. Top. Circuits Syst. 3, 377–385 (2013)

    Google Scholar 

  57. N. Rastogi, Analysis of Butterworth and Chebyshev filters for ECG denoising using wavelets. IOSR J. Electron. Commun. Eng. 6, 37–44 (2013)

    Google Scholar 

  58. L.M. Richard, Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 32 (2006)

  59. I.E. Sacu, M. Alci, Low-power OTA-C based tuneable fractional order filters. Electron. Comp. Mater. 48, 135–144 (2018)

    Google Scholar 

  60. D. Saha, D. Mondal, S. Sen, Effect of initialization on a class of fractional order systems: experimental verification and dependence on nature of past history and system parameters. Circuits Syst. Signal Process. 32, 1501–1522 (2013)

    MathSciNet  Google Scholar 

  61. R. Schaumann, X. Mac Elwyn Van Valkenburg, H. Xiao, Design of Analog Filters, vol. 1 (Oxford University Press, New York, 2001)

    Google Scholar 

  62. Z.M. Shah, M.Y. Kathjoo, F.A. Khanday, K. Biswas, C. Psychalinos, A survey of single and multi-component fractional-order elements (FOEs) and their applications. Microelectron. J. 84, 9–25 (2019)

    Google Scholar 

  63. D. Sierociuk et al., Diffusion process modeling by using fractional-order models. Appl. Math. Comput. 257, 2–11 (2015)

    Google Scholar 

  64. A. Soni, M. Gupta, Performance evaluation of different order fractional Chebyshev filter using optimisation techniques. Int. J. Electron. Lett. 8, 205–222 (2020)

    Google Scholar 

  65. R. Sotner, et al, Design of building blocks for fractional-order applications with single and compact active device, in 2020 43rd International Conference on Telecommunications and Signal Processing (TSP) (2020), pp. 573–577

  66. G. Tsirimokou, C. Psychalinos, A. Elwakil, Design of CMOS Analog Integrated Fractional-Order Circuits: Applications in Medicine and Biology (Springer, 2017)

    Google Scholar 

  67. G. Tsirimokou, C. Psychalinos, A.S. Elwakil, Digitally programmed fractional-order Chebyshev filters realizations using current-mirrors, in 2015 IEEE International Symposium on Circuits and Systems (ISCAS) (2015), pp. 2337–2340

  68. M.A. Valencia-Ponce et al., CMOS OTA-based filters for designing fractional-order chaotic oscillators. Fractal Fract. 5, 122 (2021)

    Google Scholar 

  69. J. Valsa, J. Vlach, RC models of a constant phase element. Int. J. Circuit Theory Appl. 41, 59–67 (2013)

    Google Scholar 

  70. A.I.F. Vaz, L.N. Vicente, PSwarm: a hybrid solver for linearly constrained global derivative-free optimization. Optim. Methods Softw. 24, 669–685 (2009)

    MathSciNet  MATH  Google Scholar 

  71. Y.-J. Wang, Improving particle swarm optimization performance with local search for high-dimensional function optimization. Optim. Methods Softw. Softw. 25, 781–795 (2010)

    MathSciNet  MATH  Google Scholar 

  72. X. Yang, Firefly algorithm, Lévy distributions and global optimization, in Research and Development in Intelligent Systems XXVI (2010)

Download references

Acknowledgements

The authors would like to acknowledge Prof. Harish Parthasarthy for his valuable guidance and continuous support during the work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ritu Daryani or Bhawna Aggarwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Pseudocodes for Algorithms

Appendix A Pseudocodes for Algorithms

figure a

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daryani, R., Aggarwal, B. & Gupta, M. Design of Fractional-Order Chebyshev Low-Pass Filter for Optimized Magnitude Response Using Metaheuristic Evolutionary Algorithms. Circuits Syst Signal Process 42, 2507–2537 (2023). https://doi.org/10.1007/s00034-022-02227-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02227-9

Keywords

Navigation