Skip to main content
Log in

Event-Triggered Dynamic Output Feedback Control for Genetic Regulatory Network Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper investigates the problem of dynamic output feedback control for a class of genetic regulatory network systems. A novel event-triggered mechanism is proposed for the genetic regulatory network. A dynamic output feedback controller together with event-triggered conditions is designed. Sufficient conditions to guarantee asymptotic stability of the closed-loop systems are established based on the hybrid systems theory. Compared with some existing control methods, the proposed dynamic output feedback control method with event-triggered control strategy is more realistic and effective. Finally, computational simulations are provided to verify the theoretical results and show the superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Arcak, A. Teel, Input-to-state stability for a class of Lurie systems. Automatica 38(11), 1945–1949 (2002)

    Article  MathSciNet  Google Scholar 

  2. G. Arellano, J. Argil, E. Azpeitia et al., “antelope’’: a hybrid-logic model checker for branching-time boolean GRN analysis. BMC Bioinf. 12(1), 490 (2011)

    Article  Google Scholar 

  3. S. Boyd, L. E. Ghaoui, E. Feron, et al., Linear Matrix Inequalities in System and Control Theory, Society for Industrial and Applied Mathematics, (1994)

  4. D. Carnevale, A.R. Teel, D. Nesic, A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems. IEEE Trans. Autom. Control 52(5), 892–897 (2007)

    Article  MathSciNet  Google Scholar 

  5. C. Chen, Reconstructing genetic regulatory networks using two-step algorithms with the differential equation models of neural networks. Interdiscipl. Sci. Comput. Life Sci. 10(4), 823–835 (2017)

    Article  Google Scholar 

  6. L. Chen, S. Zhao, W. Zhu et al., A self-adaptive differential evolution algorithm for parameters identification of stochastic genetic regulatory networks with random delays. Arabian J. Sci. Eng. 39(2), 821–835 (2013)

    Article  MathSciNet  Google Scholar 

  7. G. Chesi, Y. Hung, Stability analysis of uncertain genetic sum regulatory networks. Automatica 44(9), 2298–2305 (2008)

    Article  MathSciNet  Google Scholar 

  8. Y. Chi, J. Liu, Reconstructing gene regulatory networks with a memetic-neural hybrid based on fuzzy cognitive maps. Natural Comput. 18(2), 301–312 (2016)

    Article  MathSciNet  Google Scholar 

  9. G.S. Deaecto, J.C. Geromel, J. Daafouz, Dynamic output feedback \(\cal{H}_{\infty }\) control of switched linear systems. Automatica 47(8), 1713–1720 (2011)

    Article  MathSciNet  Google Scholar 

  10. J. Dong, G. Yang, Dynamic output feedback control synthesis for continuous-time T-S fuzzy systems via a switched fuzzy control scheme, IEEE Transactions on Systems, Man, and Cybernetics. Part B (Cybern.) 38(4), 1166–1175 (2008)

    Article  Google Scholar 

  11. E. Farcot, J.L. Gouzé, A mathematical framework for the control of piecewise-affine models of gene networks. Automatica 44(9), 2326–2332 (2008)

    Article  MathSciNet  Google Scholar 

  12. J.H. Garrett, M.P. Case, J.W. Hall et al., Engineering applications of neural networks. J. Intell. Manufact. 4(1), 1–21 (1993)

    Article  Google Scholar 

  13. R. Goebel, R.G. Sanfelice, A.R. Teel, Hybrid Dynamical Systems: Modeling, Stability and Robustness (Princeton University Press, Princeton, 2011)

    MATH  Google Scholar 

  14. Y. Han, X. Zhang, Y. Wang, Asymptotic stability criteria for genetic regulatory networks with time-varying delays and reaction-diffusion terms. Circuits Syst. Signal Process. 34(10), 3161–3190 (2015)

    Article  MathSciNet  Google Scholar 

  15. R.L. Holbert, H.L. LaMarre, K.D. Landreville, Fanning the flames of a partisan divide. Commun. Res. 36(2), 155–177 (2009)

    Article  Google Scholar 

  16. H.D. Jong, Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9(1), 67–103 (2002)

    Article  MathSciNet  Google Scholar 

  17. P. Khargonekar, I. Petersen, K. Zhou, Robust stabilization of uncertain linear systems: quadratic stabilizability and \(\cal{H}_{\infty }\) control theory. Trans. Autom. Control 35(3), 356–361 (1990)

    Article  MathSciNet  Google Scholar 

  18. W.P. Lee, T.H. Yang, Combining GRN modeling and demonstration-based programming for robot control. Neural Comput. Appl. 20(6), 909–921 (2010)

    Article  Google Scholar 

  19. B. Li, Y. Liu, K.I. Kou, L. Yu, Event-triggered control for the disturbance decoupling problem of boolean control networks. Trans. Cybern. 48(9), 2764–2769 (2018)

    Article  Google Scholar 

  20. F. Li, J. Sun, Asymptotic stability of a genetic network under impulsive control. Phys. Lett. A 374(31–32), 3177–3184 (2010)

    Article  Google Scholar 

  21. H. Li, X. Yang, Asymptotic stability analysis of genetic regulatory networks with time-varying delay, in 2010 Chinese Control and Decision Conferencel (2010), pp. 566-571

  22. W. Liu, Z. Wang, H. Dai, M. Naz, Dynamic output feedback control for fast sampling discrete-time singularly perturbed systems. IET Control Theory Appl. 10(15), 1782–1788 (2016)

    Article  MathSciNet  Google Scholar 

  23. X. Lou, Q. Ye, B. Cui, Impulsive stabilization of fuzzy neural networks with time-varying delays. Arabian J. Math. 2(1), 65–79 (2013)

    Article  MathSciNet  Google Scholar 

  24. N. Meslem, C. Prieur, Event-based controller synthesis by bounding methods. Eur. J. Control 26, 12–21 (2015)

    Article  MathSciNet  Google Scholar 

  25. D. Nesic, A. Teel, D. Carnevale, Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems. IEEE Trans. Autom. Control 54(3), 619–624 (2009)

    Article  MathSciNet  Google Scholar 

  26. C. Peng, T. Yang, Event-triggered communication and \(H_\infty \) control co-design for networked control systems. Automatica 49(5), 1326–1332 (2013)

    Article  MathSciNet  Google Scholar 

  27. R. Sakthivel, K. Mathiyalagan, S. Lakshmanan et al., Robust state estimation for discrete-time genetic regulatory networks with randomly occurring uncertainties. Nonlinear Dyn. 74(4), 1297–1315 (2013)

    Article  MathSciNet  Google Scholar 

  28. H.E. Samad, M. Khammash, Modelling and analysis of gene regulatory network using feedback control theory. Int. J. Syst. Sci. 41(1), 17–33 (2010)

    Article  MathSciNet  Google Scholar 

  29. S. Sheng, X. Zhang, Q. Lu et al., Event-triggered \(\cal{H}_{\infty }\) state estimation for coupled and switched genetic regulatory networks. Circuits Syst. Signal Process. 38(10), 4420–4445 (2019)

    Article  Google Scholar 

  30. F. Shu, J. Zhai, Event-triggered practical finite-time output feedback stabilisation for switched non-linear time-delay systems. IET Control Theory Appl. 14(6), 824–833 (2020)

    Article  Google Scholar 

  31. A. Tanwani, A. Teel, C. Prieur, On using norm estimators for event-triggered control with dynamic output feedback, in 54th IEEE Conference on Decision and Control (2015), pp. 5500-5505

  32. J. Wang, Q. Ma, A. Chen et al., Pinning synchronization of fractional-order complex networks with Lipschitz-type nonlinear dynamics. ISA Trans. 57, 111–116 (2015)

    Article  Google Scholar 

  33. P. Wang, J.H. Lv, Control of genetic regulatory networks: opportunities and challenges. Acta Automatica Sinica 39(12), 1969–1979 (2014)

    Article  Google Scholar 

  34. Z. Wang, X. Liao, S. Guo et al., Stability analysis of genetic regulatory network with time delays and parameter uncertainties. IET Control Theory Appl. 4(10), 2018–2028 (2010)

    Article  MathSciNet  Google Scholar 

  35. Z. Wu, H. Mo, J. Xiong et al., Adaptive event-triggered observer-based output feedback \(\cal{L}_\infty \) load frequency control for networked power systems. IEEE Trans. Ind. Inf. 16(6), 3952–3962 (2020)

    Article  Google Scholar 

  36. H. Yu, P.J. Antsaklis, Event-triggered output feedback control for networked control systems using passivity: achieving stability in the presence of communication delays and signal quantization. Automatica 49(1), 30–38 (2013)

    Article  MathSciNet  Google Scholar 

  37. Q. Zhang, X. Wei, J. Xu, Global asymptotic stability of Hopfield neural networks with transmission delays. Phys. Lett. A 318(4–5), 399–405 (2003)

    Article  MathSciNet  Google Scholar 

  38. X. Zhang, Q. Han, Event-based dynamic output feedback control for networked control systems, in 2013 American Control Conference (2013), pp. 3008–3013

  39. W. Zheng, H. Wang, H. Wang et al., Dynamic output feedback control based on descriptor redundancy approach for networked control systems with multiple mixed time-varying delays and unmatched disturbances. IEEE Syst. J. 13(3), 2942–2953 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Jiangsu Provincial Natural Science Foundation of China (BK20201340) and China Postdoctoral Science Foundation (2018M642160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuyang Lou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Lou, X., Wu, W. et al. Event-Triggered Dynamic Output Feedback Control for Genetic Regulatory Network Systems. Circuits Syst Signal Process 41, 3172–3198 (2022). https://doi.org/10.1007/s00034-021-01951-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01951-y

Keywords

Navigation