Skip to main content
Log in

Normalized Subband Spline Adaptive Filter: Algorithm Derivation and Analysis

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a normalized subband spline adaptive filter (SAF-NSAF) algorithm to solve the problem that linear subband adaptive filtering cannot identify nonlinear systems. The weight update of the proposed algorithm is conducted using the principle of minimum disturbance. Since a delayless structure is used in the proposed algorithm, a delay is not introduced into the update process. The effectiveness of the proposed algorithm is verified by simulations. Also, the mean and mean square stability of the proposed algorithm are evaluated using the principle of conservation of energy. The simulation results demonstrate that the performance of the proposed algorithm outperforms other cited nonlinear algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the first author on reasonable request.

References

  1. A. Aggarwal, M. Kumar, T.K. Rawat et al., Optimal design of 2D FIR filters with quadrantally symmetric properties using fractional derivative constraints. Circuits Syst. Signal Process. 35(6), 2213–2257 (2016)

    Article  Google Scholar 

  2. M.Z.A. Bhotto, M.O. Ahmad, M.N.S. Swamy, Robust shrinkage affine-projection sign adaptive-filtering algorithms for impulsive noise environments. IEEE Trans. Signal Process 62(13), 3349–3359 (2014)

    Article  MathSciNet  Google Scholar 

  3. T.G. Burton, R.A. Goubran, F. Beaucoup, Nonlinear system identification using a subband adaptive Volterra filter. IEEE Trans. Instrum. Meas. 58(5), 1389–1397 (2009)

    Article  Google Scholar 

  4. T.G. Burton, R.A. Goubran, A generalized proportionate subband adaptive second-order Volterra filter for acoustic echo cancellation in changing environments. IEEE Trans. Audio Speech Lang. Process. 19(8), 2364–2373 (2011)

    Article  Google Scholar 

  5. D. Comminiello, M. Scarpiniti, L.A. Azpicueta-Ruiz et al., Nonlinear acoustic echo cancellation based on sparse functional link representations. IEEE/ACM Trans. Audio Speech Lang. Process. 22(7), 1172–1183 (2014)

    Article  Google Scholar 

  6. S. Guan, Z. Li, Normalised spline adaptive filtering algorithm for nonlinear system identification. Neural Process. Lett. 5, 1–13 (2017)

    Google Scholar 

  7. F. Huang, J. Zhang, S. Zhang, Combined-step-size normalized subband adaptive filter with a variable-parametric step-size scaler against impulsive interferences. IEEE Trans. Circuits Syst. II Express Br. 99, 1–1 (2017)

  8. J.H. Kim, J.H. Chang, S.W. Nam, Sign subband adaptive filter with l1- norm minimisation-based variable step-size. Electron. Lett. 49(21), 1325–1326 (2013)

    Article  Google Scholar 

  9. J.H. Kim, J. Kim, J.H. Jeon et al., Delayless individual-weighting-factors sign subband adaptive filter with band-dependent variable step-sizes. IEEE/ACM Trans. Audio Speech Lang. Process. 25(7), 1526–1534 (2017)

    Article  Google Scholar 

  10. M. Kumar, A. Aggarwal, T. Rawat, H. Parthasarathy, Optimal nonlinear system identification using fractional delay second-order volterra system. IEEE/CAA J. Autom. Sin. (2017). https://doi.org/10.1109/JAS.2016.7510184

    Article  Google Scholar 

  11. K.A. Lee, W.S. Gan, Improving convergence of the NLMS algorithm using constrained subband updates. IEEE Signal Process. Lett. 11(9), 736–739 (2004)

    Article  Google Scholar 

  12. K.A. Lee, W.S. Gan, Inherent decorrelating and least perturbation properties of the normalized subband adaptive filter. IEEE Trans. Signal Process. 54(11), 4475–4480 (2006)

    Article  Google Scholar 

  13. K.A. Lee, W.S. Gan, S.M. Kuo, Subband Adaptive Filtering: Theory and Implementation (Wiley, Hoboken, 2009)

    Book  Google Scholar 

  14. C. Liu, Z. Zhang, X. Tang, Sign normalised spline adaptive filtering algorithms against impulsive noise. Signal Process. 148, 234–240 (2018)

    Article  Google Scholar 

  15. D.R. Morgan, J.C. Thi, A delayless subband adaptive filter architecture. IEEE Trans. Signal Process. 43(8), 1819–1830 (1995)

    Article  Google Scholar 

  16. R. Merched, P.S.R. Diniz, M.R. Petraglia, A new delayless subband adaptive filter structure. IEEE Trans. Signal Process. 47(6), 1580–1591 (1999)

    Article  Google Scholar 

  17. J. Ni, F. Li, Variable regularisation parameter sign subband adaptive filter. Electron. Lett. 46(24), 1605–1607 (2010)

    Article  Google Scholar 

  18. J. Ni, F. Li, A variable step-size matrix normalized subband adaptive filter. IEEE Trans. Audio Speech Lang. Process. 18(6), 1290–1299 (2010)

    Article  Google Scholar 

  19. J. Ni, X. Chen, J. Yang, Two variants of the sign subband adaptive filter with improved convergence rate. Signal Process. 96, 325–331 (2014)

    Article  Google Scholar 

  20. A.H. Sayed, Fundamentals of Adaptive Filtering (Wiley-Interscience, New York, 2003)

    Google Scholar 

  21. M. Scarpiniti, D. Comminiello, R. Parisi, A. Uncini, Nonlinear spline adaptive filtering. Signal Process. 93(4), 772–783 (2013)

    Article  Google Scholar 

  22. M. Scarpiniti, D. Comminiello, R. Parisi, A. Uncini, Hammerstein uniform cubic spline adaptive filtering: learning and convergence properties. Signal Process. 100, 112–123 (2014)

    Article  Google Scholar 

  23. M. Scarpiniti, D. Comminiello, R. Parisi, A. Uncini, Novel cascade spline architectures for the identification of nonlinear systems. IEEE Trans. Circuits Syst. I 62(7), 1825–1835 (2015)

    Article  MathSciNet  Google Scholar 

  24. M. Scarpiniti, D. Comminiello, R. Parisi et al., Nonlinear system identification using IIR spline adaptive filters. Signal Process. 108, 30–35 (2015)

    Article  Google Scholar 

  25. M. Scarpiniti, D. Comminiello, G. Scarano et al., Steady-state performance of spline adaptive filters. IEEE Trans. Signal Process. 64(4), 816–828 (2015)

    Article  MathSciNet  Google Scholar 

  26. S. Scardapane, M. Scarpiniti, D. Comminiello, et al., Diffusion spline adaptive filtering, in 2016 24th European Signal Processing Conference (EUSIPCO). IEEE, pp. 1498-1502 (2016)

  27. B. Widrow, S.D. Sterns, Adaptive Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1985)

    Google Scholar 

  28. P. Wen, J. Zhang, A novel variable step-size normalized subband adaptive filter based on mixed error cost function. Signal Process. 138, 48–52 (2017)

    Article  Google Scholar 

  29. P. Wen, J. Zhang, Robust variable step-size sign subband adaptive filter algorithm against impulsive noise. Signal Process. 139, 110–115 (2017)

    Article  Google Scholar 

  30. P. Wen, S. Zhang, J. Zhang, A novel subband adaptive filter algorithm against impulsive noise and it’s performance analysis. Signal Process. 127, 282–287 (2016)

    Article  Google Scholar 

  31. P. Wen, J. Zhang, S. Zhang et al., Augmented complex-valued normalized subband adaptive filter: algorithm derivation and analysis. J. Frankl. Inst. 356(3), 1604–1622 (2019)

    Article  MathSciNet  Google Scholar 

  32. P. Wen, J. Zhang, Widely-linear complex-valued diffusion subband adaptive filter algorithm. IEEE Trans. Signal Inf. Process. Over Netw. 5(2), 248–257 (2019)

    Article  MathSciNet  Google Scholar 

  33. W. Xia, L. Zhu, J. Zhu et al., A shrinkage variable step size for normalized subband adaptive filters. Signal Process. 129, 56–61 (2016)

    Article  Google Scholar 

  34. S. Zhang, J. Zhang, H. Han, Robust shrinkage normalized sign algorithm in an impulsive noise environment. IEEE Trans. Circuits Syst. II Express Br. 64(1), 91–95 (2016)

    Article  Google Scholar 

  35. S. Zhang, W.X. Zheng, Recursive adaptive sparse exponential functional link neural network for nonlinear AEC in impulsive noise environment. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 4314–4323 (2017)

    Article  Google Scholar 

  36. S. Zhang, W.X. Zheng, Mean-square analysis of multi-sampled multiband-structured subband filtering algorithm. IEEE Trans. Circuits Syst. I Regul. Pap. 66(3), 1051–1062 (2019)

    Article  Google Scholar 

  37. S. Zhang, W.X. Zheng, Subband adaptive filtering algorithm over functional link neural network. in 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp. 1-4 (2019)

  38. S. Zhang, J. Zhang, W.X. Zheng et al., Widely linear complex-valued estimated-input LMS algorithm for bias-compensated adaptive filtering with noisy measurements. IEEE Trans. Signal Process. 67(13), 3592–3605 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation of P. R. China under Grants 61671392, 62001528, 62071396, 61976237, and 61673404, the National Science Foundation of Henan Province under Grant 202300410517, the Research Award Fund for Outstanding Yong Teachers in Zhongyuan University of Technology (2018XQG09), the Key Scientific Research Projects in Colleges and Universities of Henan Province (20A120013, 21A120011). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengwei Wen or Boyang Qu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, P., Zhang, J., Zhang, S. et al. Normalized Subband Spline Adaptive Filter: Algorithm Derivation and Analysis. Circuits Syst Signal Process 40, 2400–2418 (2021). https://doi.org/10.1007/s00034-020-01577-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01577-6

Keywords

Navigation