Skip to main content
Log in

A Unifying Method to Construct Rational Basis Functions for Linear and Nonlinear Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a general and unifying method for constructing rational basis functions (RBFs). The proposal is specifically designed for finding characterizing matrices of linear RBF state equations. Analytic expressions for the realization of such state-space matrices are also developed. As will be shown, the construction method here proposed can be easily applied (but is not limited) to several RBF sets which have been successfully adopted in both linear and nonlinear system identification areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. From (24), it is possible to observe that for \(\mathbf {K} = \mathbf {I}\), we have \(\mathbf {A} = \overline{\mathbf {A}}\) and \(\mathbf {B} = \overline{\mathbf {B}}\).

  2. In Table 5, note that \(\bar{l}_2^i\) and \(\bar{l}_1^i\) are expressed in terms of \(g_i\) and \(b_i\) for the “DT-TMOBF: option 1” (see Eq. 15). For this particular basis, we have also used \( d_1^i=-2 \mathfrak {R}\hbox {e} (a_i) = b_i(g_i-1)\) and \( d_0^i=|a_i|^2=-c_i\) in the constructions (50) and (52).

References

  1. H. Akçay, B. Ninness, Rational basis functions for robust identification from frequency and time-domain measurements. Automatica 34(9), 1101–1117 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Bolder, T. Oomen, Rational basis functions in iterative learning control-with experimental verification on a motion system. IEEE Trans. Control Syst. Technol. 23(2), 722–729 (2015)

    Article  Google Scholar 

  3. D. Deschrijver, B. Haegeman, T. Dhaene, Orthonormal vector fitting: a robust macromodeling tool for rational approximation of frequency domain responses. IEEE Trans. Adv. Packag. 30(2), 216–225 (2007)

    Article  Google Scholar 

  4. S. Grivet-Talocia, B. Gustavsen, Passive Macromodeling: Theory and Applications (Wiley, New Jersey, 2016)

    Google Scholar 

  5. B. Gustavsen, A. Semlyen, Rational approximation of frequency domain responses by vector fitting. IEEE Trans. Power Deliv. 14(3), 1052–1061 (1999)

    Article  Google Scholar 

  6. P.S.C. Heuberger, P.M.J. Van den Hof, B. Wahlberg, Modelling and Identification with Rational Orthogonal Basis Functions (Springer, London, 2005)

    Book  Google Scholar 

  7. P.S.C. Heuberger, P.M.J. Van den Hof, O.H. Bosgra, A generalized orthonormal basis for linear dynamical systems. IEEE Trans. Autom. Control 40(3), 451–465 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. L.P.R.K. Ihlenfeld, G.H.C. Oliveira, M.R. Sans, A data passivity-enforcement preprocessing approach to multiport system modeling. IEEE Trans. Power Deliv. 31(3), 1351–1359 (2016)

    Article  Google Scholar 

  9. J.B. Machado, R.J.G.B. Campello, W.C. Amaral, Asymmetric Volterra models based on ladder-structured generalized orthonormal basis functions. IEEE Trans. Autom. Control 60(11), 2879–2891 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. J.B. Machado, R.J.G.B. Campello, W.C. Amaral, Takagi–Sugeno fuzzy models in the framework of orthonormal basis functions. IEEE Trans. Cybernet. 43(3), 858–870 (2013)

    Article  Google Scholar 

  11. B. Ninness, H. Hjalmarsson, F. Gustafsson, Generalized Fourier and Toeplitz results for rational orthonormal bases. SIAM J. Control Optim. 37(2), 429–460 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Ninness, F. Gustafsson, A unifying construction of orthonormal bases for system identification. IEEE Trans. Autom. Control 42(4), 515–521 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Nouri, R. Achar, M.S. Nakhla, \(z\)-Domain orthonormal basis functions for physical system identification. IEEE Trans. Adv. Packag. 33(1), 293–307 (2010)

    Article  Google Scholar 

  14. G. H. C. Oliveira, W. C. Amaral, K. Latawiec, CRHPC using Volterra models and orthonormal basis functions: an application to CSTR plants, in Proceedings of the 2003 Conference on Control Applications, pp. 718–723 (2003)

  15. G.H.C. Oliveira, C. Rodier, L.P.R.K. Ihlenfeld, LMI-based method for estimating passive blackbox models in power systems transient analysis. IEEE Trans. Power Deliv. 31(1), 3–10 (2016)

    Article  Google Scholar 

  16. G.H.C. Oliveira, R.J.G.B. Campello, W.C. Amaral, Fuzzy models within orthonormal basis function framework, in IEEE International Fuzzy Systems Conference Proceedings (Seoul, Korea, 1999), pp. 957–962

  17. T.A. Papadopoulos, A.I. Chrysochos, E.O. Kontis, G.K. Papagiannis, Ringdown analysis of power systems using vector fitting. Electr. Power Syst. Res. 141, 100–103 (2016)

    Article  Google Scholar 

  18. R. Schumacher, G.H.C. Oliveira, An optimal vector fitting method for estimating frequency-dependent network equivalents in power systems. Electr. Power Syst. Res. 150, 96–104 (2017)

    Article  Google Scholar 

  19. R. Schumacher, E.G. Lima, G.H.C. Oliveira, RF power amplifier behavioral modeling based on Takenaka–Malmaquist–Volterra series. Circuits Syst. Signal Process. 35(7), 2298–2316 (2015)

    Article  MATH  Google Scholar 

  20. R. Schumacher, G.H.C. Oliveira, S.D. Mitchell, An iterative approach for selecting poles on complex frequency localizing basis function-based models. J. Control Autom. Electr. Syst. 26(4), 380–389 (2015)

    Article  Google Scholar 

  21. K. Tiels, J. Schoukens, Wiener system identification with generalized orthonormal basis functions. Automatica 50(12), 3147–3154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Ubolli, B. Gustavsen, Comparison of methods for rational approximation of simulated time-domain responses: ARMA, ZD-VF, and TD-VF. IEEE Trans. Power Deliv. 26(1), 279–288 (2011)

    Article  Google Scholar 

  23. P. Van den Hof, B. Wahlberg, P. Heuberger, B. Ninness, J. Bokor, T.O. e Silva, Modelling and identification with rational orthogonal basis functions, in 12th IFAC Symposium on System Identification (Santa Barbara, California, 2000), pp. 1–11

  24. P.M.J. Van den Hof, P.S.C. Heuberger, J. Bokor, System identification with generalized orthonormal basis functions. Automatica 31(12), 1821–1834 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Voorhoeve, T. Oomen, R. van Herpen, M. Steinbuch, On numerically reliable frequency-domain system identification: new connections and a comparison of methods. 19th IFAC World Congress 47, 10018–10023 (2014)

    Google Scholar 

  26. B. Wahlberg, System identification using Kautz models. IEEE Trans. Autom. Control 39(6), 1276–1282 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Wahlberg, System identification using Laguerre models. IEEE Trans. Autom. Control 36(5), 551–562 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. J.S. Welsh, C.R. Rojas, Frequency localising basis functions for wide-band identification: a condition number bound for output error systems, in European Control Conference, pp. 4618–4624 (2007)

  29. J.S. Welsh, G.C. Goodwin, Frequency localising basis functions for wide-band identification, in European Control Conference, pp. 376–381 (2003)

  30. X. Xie, D. Yue, T. Ma, X. Zhu, Further studies on control synthesis of discrete-time T–S fuzzy systems via augmented multi-indexed matrix approach. IEEE Trans. Cybernet. 44(12), 2784–2791 (2014)

    Article  Google Scholar 

  31. X. Xie, D. Yue, C. Peng, Multi-instant observer design of discrete-time fuzzy systems: a ranking-based switching approach. IEEE Trans. Fuzzy Syst. PP(99), 1 (2016)

    Google Scholar 

  32. Y. Xu, R. Lu, P. Shi, J. Tao, S. Xie, Robust estimation for neural networks with randomly occurring distributed delays and Markovian jump coupling. IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1–11 (2017)

    Google Scholar 

  33. Y. Xu, R. Lu, H. Peng, K. Xie, A. Xue, Asynchronous dissipative state estimation for stochastic complex networks with quantized jumping coupling and uncertain measurements. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 268–277 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Schumacher.

Appendix A: State-Space Realizations of REFs

Appendix A: State-Space Realizations of REFs

In this appendix, we demonstrate how the elements of the two-dimensional state-space realization (\(\widehat{\hbox {A}}_{i},\widehat{\hbox {B}}_{i},\widehat{\hbox {C}}_{i},\widehat{\hbox {D}}_{i}\)) can be obtained in order to satisfy conditions (48) and (49).

Firstly, from (40) and (47), note that we can rewrite condition (48) as

$$\begin{aligned} \left[ \begin{array}{c} \displaystyle \frac{(\alpha -\hbox {A}_{22}^i)\hbox {B}_1^i+\hbox {A}_{12}^i\hbox {B}_2^i}{(\alpha -\hbox {A}_{11}^i)(\alpha -\hbox {A}_{22}^i)-\hbox {A}_{12}^i\hbox {A}_{21}^i}\\ \displaystyle \frac{(\alpha -\hbox {A}_{11}^i)\hbox {B}_2^i+\hbox {A}_{21}^i\hbox {B}_1^i}{(\alpha -\hbox {A}_{11}^i)(\alpha -\hbox {A}_{22}^i)-\hbox {A}_{12}^i\hbox {A}_{21}^i} \end{array} \right] = \left[ \begin{array}{c} \displaystyle \frac{m_{1}^i\alpha + m_{0}^i}{(\alpha -a_i)(\alpha -a_i^*)} \\ \displaystyle \frac{n_{1}^i\alpha + n_{0}^i}{(\alpha -a_i)(\alpha -a_i^*)} \end{array} \right] . \end{aligned}$$
(60)

By equating the numerators and denominators of (60), it follows that

$$\begin{aligned} \alpha \hbox {B}_{1}^i - \hbox {A}_{22}^i \hbox {B}_{1}^i + \hbox {A}_{12}^i \hbox {B}_{2}^i= & {} m_1^i \alpha + m_0^i, \end{aligned}$$
(61)
$$\begin{aligned} \alpha \hbox {B}_{2}^i - \hbox {A}_{11}^i \hbox {B}_{2}^i + \hbox {A}_{21}^i \hbox {B}_{1}^i= & {} n_1^i \alpha + n_0^i, \end{aligned}$$
(62)
$$\begin{aligned} \alpha ^2 + (-\hbox {A}_{11}^i-\hbox {A}_{22}^i) \alpha + \hbox {A}_{11}^i \hbox {A}_{22}^i - \hbox {A}_{12}^i\hbox {A}_{21}^i= & {} \alpha ^2 -2 \mathfrak {R}\hbox {e} (a_i) \alpha + |a_i|^2. \end{aligned}$$
(63)

From (61) and (62) we have

$$\begin{aligned} \hbox {B}_{1}^i= & {} m_1^i, \end{aligned}$$
(64)
$$\begin{aligned} \hbox {B}_{2}^i= & {} n_1^i. \end{aligned}$$
(65)

Using this result in (61), (62) and (63), and, the definitions of \(d_1^i\) and \(d_0^i\) given by (42) and (43), we can then write the following system of nonlinear equations:

$$\begin{aligned} - m_1^i \hbox {A}_{22}^i + n_1^i \hbox {A}_{12}^i= & {} m_0^i, \end{aligned}$$
(66)
$$\begin{aligned} - n_1^i \hbox {A}_{11}^i + m_1^i \hbox {A}_{21}^i= & {} n_0^i, \end{aligned}$$
(67)
$$\begin{aligned} -\hbox {A}_{11}^i - \hbox {A}_{22}^i= & {} d_1^i, \end{aligned}$$
(68)
$$\begin{aligned} \hbox {A}_{11}^i\hbox {A}_{22}^i - \hbox {A}_{12}^i\hbox {A}_{21}^i= & {} d_0^i. \end{aligned}$$
(69)

Such a nonlinear system is solved as follows. From (66) and (67), it results that

$$\begin{aligned} \hbox {A}_{22}^i= & {} \frac{-m_0^i+n_1^i \hbox {A}_{12}^i}{ m_1^i }, \end{aligned}$$
(70)
$$\begin{aligned} \hbox {A}_{21}^i= & {} \frac{n_0^i+n_1^i \hbox {A}_{11}^i}{ m_1^i }. \end{aligned}$$
(71)

Direct substitution of (70) and (71) into (69) leads us to

$$\begin{aligned} \hbox {A}_{12}^i = \frac{-d_0^i m_1^i - m_0^i \hbox {A}_{11}^i}{ n_0^i }. \end{aligned}$$
(72)

Using (72) in (66), it follows that

$$\begin{aligned} \hbox {A}_{22}^i = \frac{-d_0^i m_1^i n_1^i - m_0^i n_0^i - m_0^i n_1^i \hbox {A}_{11}^i }{ m_1^i n_0^i }. \end{aligned}$$
(73)

Direct substitution of (73) into (68) finally leads us to an analytic expression for \(\hbox {A}_{11}^i\),

$$\begin{aligned} \hbox {A}_{11}^i = \left( -d_{1}^i m_{1}^i n_{0}^i + m_{0}^i n_{0}^i + d_{0}^i m_{1}^i n_{1}^i\right) /\left( m_{1}^i n_{0}^i - m_{0}^i n_{1}^i\right) . \end{aligned}$$
(74)

\(\hbox {A}_{12}^i\), \(\hbox {A}_{21}^i\) and \(\hbox {A}_{22}^i\) can then be found by combining (74) with (72), (71) and (68), respectively:

$$\begin{aligned} \hbox {A}_{12}^i= & {} \left( -d_{0}^i (m_{1}^i)^2 + d_{1}^i m_{0}^i m_{1}^i - (m_{0}^i)^2\right) /\left( m_{1}^i n_{0}^i - m_{0}^i n_{1}^i\right) , \end{aligned}$$
(75)
$$\begin{aligned} \hbox {A}_{21}^i= & {} \left( d_{0}^i (n_{1}^i)^2 - d_{1}^i n_{0}^i n_{1}^i + (n_{0}^i)^2\right) /\left( m_{1}^i n_{0}^i - m_{0}^i n_{1}^i\right) , \end{aligned}$$
(76)
$$\begin{aligned} \hbox {A}_{22}^i= & {} \left( d_{1}^i m_{0}^i n_{1}^i - m_{0}^i n_{0}^i - d_{0}^i m_{1}^i n_{1}^i\right) /(m_{1}^i n_{0}^i - m_{0}^i n_{1}^i). \end{aligned}$$
(77)

We now concentrate our attention in order to find \(\widehat{\hbox {C}}_i\) and \(\widehat{\hbox {D}}_i\) for which the input–output condition (49) holds.

From (40), (41) and (47), note that (49) can be rewritten as

$$\begin{aligned} \hbox {C}_{1}^i\displaystyle \frac{m_{1}^i\alpha + m_{0}^i}{\alpha ^2 + d_{1}^i \alpha + d_{0}^i} + \hbox {C}_{2}^i\displaystyle \frac{n_{1}^i\alpha + n_{0}^i}{\alpha ^2 + d_{1}^i \alpha + d_{0}^i} + \widehat{\hbox {D}}_i = \frac{\bar{l}_{2}^i\alpha ^2 + \bar{l}_{1}^i\alpha + \bar{l}_{0}^i}{\alpha ^2 + d_{1}^i \alpha + d_{0}^i}. \end{aligned}$$
(78)

By equating the numerators of both sides in (78), and applying some basic manipulations, it results that

$$\begin{aligned} \widehat{\hbox {D}}_i \alpha ^2 + \left( d_{1}^i \widehat{\hbox {D}}_i + m_{1}^i \hbox {C}_{1}^i + n_{1}^i \hbox {C}_{2}^i\right) \alpha + d_{0}^i\widehat{\hbox {D}}_i + m_{0}^i \hbox {C}_{1}^i + n_{0}^i \hbox {C}_{2}^i= \bar{l}_{2}^i\alpha ^2 + \bar{l}_{1}^i\alpha + \bar{l}_{0}^i. \end{aligned}$$
(79)

From (79) we have

$$\begin{aligned} \widehat{\hbox {D}}_i = \bar{l}_{2}^i. \end{aligned}$$
(80)

Using this result in (79), we can then write the following system of linear equations:

$$\begin{aligned} m_{1}^i \hbox {C}_{1}^i + n_{1}^i \hbox {C}_{2}^i= & {} \bar{l}_{1}^i-d_{1}^i \bar{l}_{2}^i, \end{aligned}$$
(81)
$$\begin{aligned} m_{0}^i \hbox {C}_{1}^i + n_{0}^i \hbox {C}_{2}^i= & {} \bar{l}_{0}^i - d_{0}^i \bar{l}_{2}^i, \end{aligned}$$
(82)

which has its analytic solution given by

$$\begin{aligned} \hbox {C}_{1}^i= & {} \left( ~ n_{0}^i( \bar{l}_1^i-\bar{l}_2^i d_1^i ) - n_{1}^i( \bar{l}_0^i-\bar{l}_2^i d_0^i ) ~\right) /(m_{1}^i n_{0}^i - m_{0}^i n_{1}^i), \end{aligned}$$
(83)
$$\begin{aligned} \hbox {C}_{2}^i= & {} \left( -m_{0}^i( \bar{l}_1^i-\bar{l}_2^i d_1^i ) + m_{1}^i( \bar{l}_0^i-\bar{l}_2^i d_0^i ) ~\right) /(m_{1}^i n_{0}^i - m_{0}^i n_{1}^i). \end{aligned}$$
(84)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schumacher, R., Oliveira, G.H.C. A Unifying Method to Construct Rational Basis Functions for Linear and Nonlinear Systems. Circuits Syst Signal Process 37, 2394–2412 (2018). https://doi.org/10.1007/s00034-017-0683-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0683-6

Keywords

Navigation