Skip to main content
Log in

On Choquard problems in \(\mathbb {R}^N\) influenced by the negative part of the spectrum

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This article focuses on studying the existence of solutions for the following indefinite Choquard equation in \(\mathbb {R}^{N}\):

where \(N \ge 2\). Here, \(\alpha \) is a positive constant satisfying \(0<\alpha <N\), and \(I_{\alpha }\) represents the Riesz potential of order \(\alpha \). The potential V(x) is nonperiodic and changes sign, leading to \(\inf \sigma (-\Delta + V)<0\), where \(\sigma (-\Delta + V)\) denotes the spectrum of the operator \(-\Delta +V\), which the problem become indefinite. The exponent p is chosen from the range given by

$$\begin{aligned} \frac{N-2}{N+\alpha }<\frac{1}{p}<\dfrac{1}{2}<\frac{N}{N+\alpha }. \end{aligned}$$
(0.1)

In this work, we establish the existence of nontrivial solutions by employing significant outcomes from spectral theory, along with a version of the linking theorem presented by [13], and the interaction between translated solutions of the problem at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All the data can be accessed from this article.

References

  1. Alves, C.O., Souto, M.A.S.: Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity. J. Differ. Equ. 254, 1977–1991 (2013)

    Article  Google Scholar 

  2. Bueno, H., Mamani, G.G., Pereira, G.A.: Ground state of a magnetic nonlinear Choquard equation. Nonlinear Anal. 181, 189–199 (2019)

    Article  MathSciNet  Google Scholar 

  3. Chen, S., Yuan, S.: Ground state solutions for a class of Choquard equations with potential vanishing at infinity. J. Math. Appl. 2, 880–894 (2018)

    MathSciNet  Google Scholar 

  4. Costa, D.G., Tehrani, H.: Existence and multiplicity results for a class of Schrödinger equations with indefinite nonlinearities. Adv. Differ. Equ. 8, 1319–1340 (2003)

    Google Scholar 

  5. Egorov, Y., Kondratiev, V.: On Spectral Theory of Elliptic Operators. Birkhäuser, Basel (1996)

    Book  Google Scholar 

  6. Évéquoz, G., Weth, T.: Entire solutions to nonlinear scalar field equations with indefinite linear part. Adv. Nonlinear Stud. 12, 281–314 (2012)

    Article  MathSciNet  Google Scholar 

  7. Furtado, M.F., Maia, L.A., Medeiros, E.S.: Positive and nodal solitons for a nonlinear Schrödinger equation with indefinite potential. Adv. Nonlinear Stud. 8, 353–373 (2008)

    Article  MathSciNet  Google Scholar 

  8. Guo, T., Tang, X., Zhang, Q., Gao, Z.: Nontrivial solutions for the Choquard equation with indefinite linear part and upper critical exponent. Commun. Pure Appl. Anal. 19(3), 1563–1579 (2020)

    Article  MathSciNet  Google Scholar 

  9. Li, G., Li, Y., Liu, X., Tang, C.: A positive solution of asymptotically periodic Choquard equations with locally defined nonlinearities. Commun. Pure Appl. Anal. 19(3), 1351–1365 (2020)

    Article  MathSciNet  Google Scholar 

  10. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57(2), 93–105 (1976/77)

  11. Lieb, E.H., Loss, M.: Analysis. In: Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)

  12. Maia, L.A., de Oliveira Junior, J.C., Ruviaro, R.: A non-periodic and asymptotically linear indefinite variational problem in \(\mathbb{R}^N\). Indiana Univ. Math. J. 66(1), 31–54 (2017)

    Article  MathSciNet  Google Scholar 

  13. Maia, L.A., Soares, M.: An indefinite elliptic problem on \(\mathbb{R} ^N\) autonomous at infinity: the crossing effect of the spectrum and the nonlinearity. Calc. Var. 41(59), 1–22 (2020)

    Google Scholar 

  14. Moroz, V., Van Schaftingen, J.: A guide to the Choquard equation. J. Fixed Point Theory Appl. 19(1), 773–813 (2017)

    Article  MathSciNet  Google Scholar 

  15. Moroz, V., Schaftingen, J.V.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265(2), 153–184 (2013)

    Article  MathSciNet  Google Scholar 

  16. Moroz, I.M., Penrose, R., Tod, P.: Spherically-symmetric solutions of the Schrödinger–Newton equations. Class. Quantum Gravity 15(15), 2733–2742 (1998)

    Article  Google Scholar 

  17. Pankov, A.A.: Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J. Math. 73, 259–287 (2005)

    Article  MathSciNet  Google Scholar 

  18. Pankov, A.A., Pflüger, K.: On a semilinear Schrödinger equation with periodic potential. Nonlinear Anal. 33, 593–690 (1998)

    Article  MathSciNet  Google Scholar 

  19. Pekar, S.: Untersuchung über die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    Book  Google Scholar 

  20. Riesz, M.: L’intégrale de Riemann–Liouville et le problème de Cauchy. Acta Math. 81, 1–223 (1949)

    Article  MathSciNet  Google Scholar 

  21. Stuart, C.A.: An Introduction to Elliptic Equation in \(\mathbb{R}^N\). Trieste Notes (1998)

  22. Szulkin, A., Weth, T.: Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257, 3802–3822 (2009)

    Article  MathSciNet  Google Scholar 

  23. Wang, T., Zhang, W.: Ground state solutions and infinitely many solutions for a nonlinear Choquard equation. Bound. Value Probl. 93, 1–15 (2021)

    MathSciNet  Google Scholar 

  24. Zhang, H., Xu, J., Zhang, F.: Existence and multiplicity of solutions for a generalized Choquard equation. Comput. Math. Appl. 73, 1803–1814 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Funding

CNPq/Brazil Proc 303256/2022-2 and Grant 310825/2022-9.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote and reviewed this paper.

Corresponding author

Correspondence to J. C. Oliveira Junior.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

It is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

O. H. Miyagaki was partially supported by CNPq/Brazil Proc 303256/2022-2. S. I. Moreira was partially supported by CNPq/Brazil Grant 310825/2022-9.

Appendix A

Appendix A

Let \(\overline{B_R}\) be the closure of the ball of radius \(R>0\) in a finite-dimensional space \(E^-\), that is generated by the functions \(\phi _1,\ldots ,\phi _k\). We would like to remind that when we write \(\Upsilon (1)\) or \(\Upsilon ^+(1)\) in the following integrals, the variable in question is implied. Additionally, both functions are functions that depend on \(z\in \mathbb {R}^N\). We want to prove that

$$\begin{aligned} \displaystyle \lim _{|z|\rightarrow \infty } \left[ \,\,\,\int \limits _{\mathbb {R}^{N}}\left( I_{\alpha } *|\Upsilon ^{+}(1)+|v^-||^p\right) |\Upsilon ^{+}(1)+|v^-||^{p} \textrm{d}x - \int \limits _{\mathbb {R}^{N}}\left( I_{\alpha } *|\Upsilon (1)+|v^-||^p\right) |\Upsilon (1)+|v^-||^{p} \textrm{d}x\right] = 0,\nonumber \\ \end{aligned}$$
(5.1)

uniformly on \(v^-\in \overline{B_R}\). Indeed, we have proved in (4.7) and (4.8) that

$$\begin{aligned} \mathcal {J}_z:= & {} \dfrac{1}{2p} \displaystyle \int \limits _{\mathbb {R}^N}\displaystyle \int \limits _{\mathbb {R}^N}\dfrac{1}{|x-y|^{N-\alpha }} \left( \dfrac{}{}|\Upsilon _y(t_z)|^p|\Upsilon _x(t_z)|^p - |\Upsilon ^+_y(t_z)|^{p}|\Upsilon ^+_x(t_z)|^{p}\right) \textrm{d}x\textrm{d}y \\ {}\le & {} \dfrac{C}{2p} \displaystyle \int \limits _{\mathbb {R}^N}\displaystyle \int \limits _{\mathbb {R}^N}\dfrac{1}{|x-y|^{N-\alpha }}\left( |\Upsilon ^-_y(t_z)|+|\Upsilon ^-_x(t_z)|\right) \left( \dfrac{}{} |\Upsilon _x(t_z)|^{p-1}|\Upsilon _y(t_z)|^p + |\Upsilon ^-_x(t_z)|^{p-1}|\Upsilon _y(t_z)|^p \right. \\{} & {} \left. + \ |\Upsilon _x(t_z)|^{p-1} |\Upsilon ^-_y(t_z)|^{p} + |\Upsilon ^-_x(t_z)|^{p-1}|\Upsilon ^-_y(t_z)|^p +|\Upsilon _x(t_z)|^{p}|\Upsilon _y(t_z)|^{p-1} + |\Upsilon ^-_x(t_z)|^{p}|\Upsilon _y(t_z)|^{p-1}\right. \\{} & {} \left. + \ |\Upsilon _x(t_z)|^{p} |\Upsilon ^-_y(t_z)|^{p-1} + |\Upsilon ^-_x(t_z)|^{p}|\Upsilon ^-_y(t_z)|^{p-1} \dfrac{}{}\right) \textrm{d}x\textrm{d}y \\\le & {} C \displaystyle \sum _{i=1}^{16} e^{-\mu _{i,z}|z|}, \ \text {for all} \ z\in \mathbb {R}^N. \end{aligned}$$

Therefore, to prove the limit (5.1), we proceed in the same way to obtain several integrals that depend on \(|v^-|\). Since \(v^-\in \overline{B_R}\), we just use the exponential decay of the functions in \(E^-\), which is guaranteed by the finite dimension of \(E^-\). Therefore, the limit (5.1) is uniformly on \(v^-\in \overline{B_R}\), as we wished to prove.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moura, E.L., Miyagaki, O.H., Moreira, S.I. et al. On Choquard problems in \(\mathbb {R}^N\) influenced by the negative part of the spectrum. Z. Angew. Math. Phys. 75, 90 (2024). https://doi.org/10.1007/s00033-024-02233-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-024-02233-8

Keywords

Mathematics Subject Classification

Navigation