Skip to main content
Log in

Traveling waves of predator–prey system with a sedentary predator

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The existence of traveling waves to general predator–prey systems is an interesting and ongoing problem, and predator–prey systems that the predator spreads faster than the prey are the major focus of the previous research. In this paper, we are concerned with the existence of traveling waves to predator–prey system with the density death function of the predator when the predator is stationary. First of all, by the unstable manifold theorem, we show that pursuit and evasion waves do not exist for any wave speeds c, as well as invasion waves do not exist for any wave speeds \(c\leqslant 0\). Then, with the aid of the shooting argument, Wazewski theorem, LaSalle’s invariance principle and sophisticated analyses, we establish the existence of invasion waves for wave speed \(c>0\), which partially answers the open problem proposed in Wu (Comput. Math. Appl. 76(5):1139-1160, 2018). Finally, we apply the existence results to Yodzis predator–prey system with Holling type-III functional response and then find a new phenomenon different from previous results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The numerical simulations in this paper are carried out using MATLAB.

References

  1. Cantrell, R.S., Cosner, C., Ruan, S.: Spatial Ecology. CRC Press (2010)

  2. Chen, X., Tsai, J.C.: Spreading speed in a farmers and hunter-gatherers model arising from Neolithic transition in Europe. J. Math. Pures Appl. 143, 192–207 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dunbar, S.R.: Travelling wave solutions of diffusive Lotka-Volterra equations. J. Math. Biol. 17(1), 11–32 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dunbar, S.R.: Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in \({\mathbb{R}}^4\). Trans. Amer. Math. Soc., 557–594 (1984)

  5. Dunbar, S.R.: Traveling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinic orbits. SIAM J. Appl. Math. 46(6), 1057–1078 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Du, Y., Shi, J.P.: Some recent results on diffusive predator-prey models in spatially heterogeneous environment. Nonlinear Dynam. Evol. Equ. 48, 95–135 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Ding, W., Huang, W.: Traveling wave solutions for some classes of diffusive predator-prey models. J. Dynam. Differ. Equ. 28(3), 1293–1308 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fagan, W.F., Bishop, J.G.: Trophic interactions during primary succession: herbivores slow a plant reinvasion at Mount St. Helens. Am. Nat. 155(2), 238–251 (2000)

  9. Hale, J.K.: Ordinary Differential Equations. Krieger Publishing Company, Robert E (1980)

  10. Huang, J., Lu, G., Ruan, S.: Existence of traveling wave solutions in a diffusive predator-prey model. J. Math. Biol. 46(2), 132–152 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hassell, M.P.: The Dynamics of Arthropod Predator-Prey Systems. Princeton University Press (1978)

  12. Huang, W.: Traveling wave solutions for a class of predator-prey systems. J. Dynam. Differ. Equ. 24(3), 633–644 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, W.: A geometric approach in the study of traveling waves for some classes of non-monotone reaction-diffusion systems. J. Differ. Equ. 260(3), 2190–2224 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, Y., Weng, P.: Periodic traveling wave train and point-to-periodic traveling wave for a diffusive predator-prey system with Ivlev-type functional response. J. Math. Anal. Appl. 417(1), 376–393 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hosono, Y.: Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator. Discrete Contin. Dyn. Syst. Ser. B 20(1), 161–171 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Hsu, C.H., Yang, C.R., Yang, T.H., et al.: Existence of traveling wave solutions for diffusive predator-prey type systems. J. Differ. Equ. 252(4), 3040–3075 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lotka, A.J.: Elements of Physical Biology. Williams & Wilkins (1925)

  18. Leung, A.: Limiting behaviour for a prey-predator model with diffusion and crowding effects. J. Math. Biol. 6(1), 87–93 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, H., Xiao, H.: Traveling wave solutions for diffusive predator-prey type systems with nonlinear density dependence. Comput. Math. Appl. 74(10), 2221–2230 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Li, W.T., Wu, S.L.: Traveling waves in a diffusive predator-prey model with Holling type-III functional response. Chaos Solit. Fractals 37(2), 476–486 (2008)

  21. Lin, X., Weng, P., Wu, C.: Traveling wave solutions for a predator-prey system with sigmoidal response function. J. Dynam. Differ. Equ. 23(4), 903–921 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Malchow, H.: Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation. Chapman and Hall/CRC (2007)

  23. Murray, J.D.: Mathematical Biology. Springer-Verlag, New York (1989)

  24. Neubert, M.G., Caswell, H.: Density-dependent vital rates and their population dynamic consequences. J. Math. Biol. 41(2), 103–121 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Owen, M.R., Lewis, M.A.: How predation can slow, stop or reverse a prey invasion. Bull. Math. Biol. 63(4), 655–684 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Springer Science & Business Media (2012)

  27. Pan, S.: Invasion speed of the prey in a predator-prey system. Bull. Malays. Math. Sci. Soc. 44(6), 3983–3990 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Riechert, S.E.: S.E.: Spiders as representative ‘sit-and-wait’ predators. In: Natural Enemies: The Population Biology of Predators, Parasites and Diseases, 313–328 (1992)

  29. Safuan, H.M., Towers, I.N., Jovanoski, Z., et al.: On travelling wave solutions of the diffusive Leslie-Gower model. Appl. Math. Comput. 274, 362–371 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118(2972), 558–560 (1926)

    Article  MATH  Google Scholar 

  31. Wu, Y., Xiao, H.: Traveling wave solutions for Gause type predator-prey systems with density dependence: a heteroclinic orbit in \({\mathbb{R} }^4\). Comput. Math. Appl. 76(5), 1139–1160 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Yang, D., Liu, M.: Traveling wave solutions in a diffusive predator-prey system with Holling type-III functional response. Jpn. J. Ind. Appl. Math. 39(1), 97–118 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, Z., Yang, T.H., Wang, W.: Traveling wave solutions of Lotka-Volterra type two predators one prey model. Math. Methods Appl. Sci. 39(18), 5395–5408 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their useful suggestions which improve the contents of this paper.

Funding

Yang Wang’s research is supported in part by the National Natural Science Foundation of China (No.11901366) and Shanxi Scholarship Council of China (2021-001). Rong Yuan’s research is supported in part by the National Natural Science Foundation of China (No.12171039 and 12271044). Zhaohai Ma’s research is supported in part by the National Natural Science Foundation of China (No.12001502).

Author information

Authors and Affiliations

Authors

Contributions

Hongliang Li wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hongliang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

This research did not involve human participants or animals.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, Y., Yuan, R. et al. Traveling waves of predator–prey system with a sedentary predator. Z. Angew. Math. Phys. 74, 198 (2023). https://doi.org/10.1007/s00033-023-02092-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02092-9

Keywords

Mathematics Subject Classification

Navigation