Skip to main content
Log in

Long-time behaviours of classical solutions to relativistic Euler–Poisson equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, long-time behaviours of classical solutions to relativistic Euler–Poisson equations in radial symmetry (REPE) are investigated. First, we establish the finite propagation speed property of the REPE system and the propagation speed \(\sigma \) is found to be

$$\begin{aligned} \sigma :=\sqrt{\frac{8\pi M}{R(1+e/c^{2})}+c^2}, \end{aligned}$$

where all constants are given parameters or initial data to the system. Subsequently, we show that if the initial functional

$$\begin{aligned} \int \limits _0^{R}v(0,r)\textrm{d}r \end{aligned}$$

is sufficiently large, then the classical solutions of the REPE will blow up on finite time, where v(0, r) is the initial velocity component of REPE and R is the radius of support of the initial mass-energy density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chan, W.H., Wong, S., Yuen, W.M.: Blowup of regular solutions for the relativistic Euler–Poisson equations. J. Math. Anal. Appl. 439, 925–936 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cheung, K.L., Wong, S.: Finite-time blowup of smooth solutions for the relativistic generalized Chaplygin Euler equations. J. Math. Anal. Appl. 489, 14 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, C.F.: Introduction to Plasma Physics and Controlled Fusion. Plenum Press, New York, NY, USA (1984)

    Book  Google Scholar 

  4. Geng, Y.: Singularity formation for relativistic Euler and Euler–Poisson equations with repulsive force. Commun. Pure Appl. Anal. 14, 549–564 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Geng, Y., Li, Y.: Local Smooth Solutions to the 3-dimensional Isentropic Relativistic Euler Equations. Chin. Ann. Math. 35B, 301–318 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guo, Y., Tahvildar-Zadeh, A.S.: Formation of singularities in relativistic fluid dynamics and in spherically symmetric plasma dynamics, nonlinear partial differential equations (Evanston, IL, 1998), 151–161, Contemp. Math., 238, Amer. Math. Soc., Providence, RI, (1999)

  7. Lions, P.L.: Mathematical topics in fluid mechanics, vol. 1-2, The Clarendon Press, Oxford, UK, (1998)

  8. Geng, Y., Wang, L.: Global smooth solutions to relativistic Euler–Poisson equations with repulsive force. Acta Math. Appl. Sin. Engl. Ser. 30, 1025–1036 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Luo, T., Smoller, J.: Existence and non-linear stability of rotating star solutions of the compressible Euler–Poisson equations. Arch. Ration. Mech. Anal. 191, 447–496 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. LeFloch, P., Ukai, S.: A symmetrization of the relativistic Euler equations with several spatial variables. Kinet. Relat. Models 2, 275–292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mai, L.S., Li, J.Y., Zhang, K.J.: On the steady state relativistic Euler–Poisson equations. Acta Appl. Math. 125, 135–157 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Makino, T., Ukai, S., Kawashima, S.: Sur la solution à support compact De L’équations D’Euler compressible. Jpn. J. Appl. Math. 3, 249–257 (1986)

    Article  MATH  Google Scholar 

  13. Makino, T., Ukai, S.: Local smooth solutions of the relativistic Euler equation. J. Math. Kyoto Univ. 35, 105–114 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Makino, T., Ukai, S.: Local smooth solutions of the relativistic Euler equation II. Kodai Math. J. 18, 365–375 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pan, R., Smoller, J.: Blowup of smooth solutions for relativistic Euler equations. Comm. Math. Phys. 262, 729–755 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Perthame, B.: Nonexistence of global solutions to Euler–Poisson equations for repulsive forces. Japan J. Appl. Math. 7, 363–367 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sideris, T.: Formation of singularities in solutions to nonlinear hyperbolic equations. Arch. Rational Mech. Anal. 86, 369–381 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sideris, T.: Formation of singularities in three-dimensional compressible fluids. Comm. Math. Phys. 101, 475–485 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wei, D.M., Tadmor, E., Bae, H.: Critical thresholds in multi-dimensional Euler-Poisson equations with radial symmetry. Commun. Math. Sci. 10, 75–86 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wong, S., Yuen, M.W.: Blowup phenomena for the compressible euler and Euler–Poisson equations with initial functional conditions, Sci. World J. 2014, 580871, 1–5 (2014)

  21. Yuen, M.W.: Blowup for the euler and Euler–Poisson equations with repulsive forces. Nonlinear Anal. TMA 74, 1465–1470 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yuen, M.W.: Blowup for the \(C^{1}\) solutions of the Euler–Poisson equations of Gaseous stars in \(R^{N}\). J. Math. Anal. Appl. 383, 627–633 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is partially supported by the 2022-23 Research Grant MIT/DRG03/22-23 of the Department of Mathematics and Information Technology, The Education University of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Wong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we provide an independent result which describes how a type of general first-order differential inequality will blow up on finite time.

Lemma 13

Consider the following differential inequality:

$$\begin{aligned} {H}'(t)\ge \frac{H^2(t)}{A(t)}-G(t)\quad t\ge t_0 \end{aligned}$$
(107)

such that A and G are given positive and increasing functions of \(t\ge t_0\). We have, for any \(\tau > t_0\), if

$$\begin{aligned} H(t_0)>C(\tau ), \end{aligned}$$
(108)

then the solutions blow up on or before \(\tau \), where \(C(\tau )\) is the maximum of

$$\begin{aligned} \sqrt{2A(\tau )G(\tau )} \end{aligned}$$
(109)

and

$$\begin{aligned} \left[ \int \limits _{t_0}^\tau \frac{1}{2A(s)}ds\right] ^{-1}. \end{aligned}$$
(110)

Proof

Fix \(\tau >0\), for any \(t_0\le t\le \tau \), (107) becomes

$$\begin{aligned} {H}'(t)&\ge \frac{H^2(t)}{A(t)}-G(t)\end{aligned}$$
(111)
$$\begin{aligned}&=\frac{H^2(t)}{2A(t)}+\left[ \frac{H^2(t)}{2A(t)}-G(t)\right] \end{aligned}$$
(112)
$$\begin{aligned}&\ge \frac{H^2(t)}{2A(t)}+\left[ \frac{H^2(t)}{2A(\tau )}-G(\tau )\right] \end{aligned}$$
(113)
$$\begin{aligned}&=:\frac{H^2(t)}{2A(t)}+Q(t). \end{aligned}$$
(114)

By (108), \(Q(t_0)>0\). Hence \(Q(t)\ge 0\) on \([t_0,\tau ]\) and

$$\begin{aligned} {H}'(t)\ge \frac{H^2(t)}{2A(t)} \end{aligned}$$
(115)

on \([t_0,\tau ]\). Therefore,

$$\begin{aligned} \frac{1}{H(t_0)}-\frac{1}{H(t)}&\ge \int \limits _{t_0}^t\frac{1}{2A(s)}\textrm{d}s\end{aligned}$$
(116)
$$\begin{aligned} 0<\frac{1}{H(t)}&\le \frac{1}{H(t_0)}-\int \limits _{t_0}^t\frac{1}{2A(s)}\textrm{d}s. \end{aligned}$$
(117)

By (108), the right-hand side of (117) is negative when \(t=\tau \). Thus, the solutions blow up on or before time \(\tau \). The proof is completed. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheung, K.L., Wong, S. & Yee, T.L. Long-time behaviours of classical solutions to relativistic Euler–Poisson equations. Z. Angew. Math. Phys. 74, 175 (2023). https://doi.org/10.1007/s00033-023-02070-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02070-1

Keywords

Mathematics Subject Classification

Navigation