Skip to main content
Log in

Experimental evaluation of micromorphic elastic constants in foams and lattices

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Micromorphic (microstructure) elastic constants are considered within the context of experimental results for foams and rib lattices and of subsets such as Cosserat elasticity, void elasticity and reduced micromorphic elasticity. Experimentally, longitudinal wave dispersion and cutoff frequencies reveal several of the micromorphic b coefficients. In static experiments, no size effects are evident in compression for the materials studied. The corresponding micromorphic a coefficients are not distinguishable from zero. By contrast, Cosserat effects are pronounced in these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sokolnikoff, I.S.: Theory of Elasticity. Krieger, Malabar (1983)

    MATH  Google Scholar 

  2. Koiter, W.: Couple stresses in the theory of elasticity: I and II. Proc. Koninkl. Ned. Akad. Wetensch. Ser. B 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  3. Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Hermann et Fils, Paris (1909)

    MATH  Google Scholar 

  4. Mindlin, R.D.: Stress functions for a Cosserat continuum. Int. J. Solids Struct. 1, 265–271 (1965)

    Article  Google Scholar 

  5. Mindlin, R.D.: Stress functions for Cosserat elasticity. Int. J. Solids Struct. 6, 389–398 (1970)

    Article  Google Scholar 

  6. Eringen, A.C.: Theory of micropolar elasticity. In: Liebowitz, H. (Ed.) Fracture, Vol. 1, pp. 621–729. Academic Press, New York (1968)

  7. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Rational Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983)

    Article  MATH  Google Scholar 

  9. Eringen, A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28(12), 1291–1301 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Neff, P., Ghiba, I., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Continu. Mech. Thermodyn. 26(5), 639–681 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Askar, A., Cakmak, A.S.: A structural model of a micropolar continuum. Int. J. Eng. Sci. 6, 583–589 (1968)

    Article  MATH  Google Scholar 

  12. Tauchert, T.: A lattice theory for representation of thermoelastic composite materials. Recent Adv. Eng. Sci. 5, 325–345 (1970)

    Google Scholar 

  13. Bigoni, D., Drugan, W.J.: Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74, 741–753 (2007)

    Article  MathSciNet  Google Scholar 

  14. Prall, D., Lakes, R.S.: Properties of a chiral honeycomb with a Poisson’s ratio of \(-1\). Int. J. Mech. Sci. 39(3), 305–314 (1997)

    Article  MATH  Google Scholar 

  15. Spadoni, A., Ruzzene, M.: Elasto-static micropolar behaviour of a chiral auxetic lattice. J. Mech. Phys. Solids 60, 156–171 (2012)

    Article  Google Scholar 

  16. Minagawa, S., Arakawa, K., Yamada, M.: Diamond crystals as Cosserat continua with constrained rotation. Phys. Status Solidi A 57, 713–718 (1980)

  17. Chen, Y., Lee, J.D.: Determining material constants in micromorphic theory through phonon dispersion relations. Int. J. Eng. Sci. 41, 871–886 (2003)

    Article  Google Scholar 

  18. Dillard, T., Forest, S., Ienny, P.: Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. Eur. J. Mech. A Solids 25, 526–549 (2006)

    Article  MATH  Google Scholar 

  19. Cowin, S.C.: An incorrect inequality in micropolar elasticity theory. Zeitschrift fur Angewandte Mathematik und Physik 21, 494–497 (1970)

    Article  MATH  Google Scholar 

  20. Krishna Reddy, G.V., Venkatasubramanian, N.K.: On the flexural rigidity of a micropolar elastic circular cylinder. J. Appl. Mech. 45, 429–431 (1978)

  21. Gauthier, R.D., Jahsman, W.E.: A quest for micropolar elastic constants. J. Appl. Mech. 42, 369–374 (1975)

    Article  MATH  Google Scholar 

  22. Rizzi, G., Hutter, G., Khan, H., Ghiba, I.D., Madeo, A., Neff, P.: Analytical solution of the cylindrical torsion problem for the relaxed micromorphic continuum and other generalized continua (including full derivations), (arXiv:2104.11322). Math. Mech. Solids (2021). https://doi.org/10.1177/10812865211023530

  23. Rizzi, G., Ghiba, I.D., Madeo, A., Neff, P.: Analytical solution of the uniaxial extension problem for the relaxed micromorphic continuum and other generalized continua (including full derivations). Arch. Appl. Mech. (2021). https://doi.org/10.1007/s00419-021-02064-3

    Article  MATH  Google Scholar 

  24. Rizzi, G., Khan, H., Ghiba, I.D., Madeo, A., Neff, P.: Cosserat micropolar elasticity: classical Eringen vs. dislocation form, arxiv:2206.02473v1

  25. Hoff, N.J.: The applicability of Saint Venant’s principle to airplane structures. J. Aeronaut. Sci. 12, 455–460 (1945)

    Article  Google Scholar 

  26. Fung, Y.C.: Foundations of Solid Mechanics. Prentice Hall, NJ (1968)

    Google Scholar 

  27. Stephen, N.G., Wang, P.J.: On Saint Venant’s principle in pin jointed frameworks. Int. J. Solids Struct. 33, 79–97 (1996)

    Article  MATH  Google Scholar 

  28. Chen, C.P., Lakes, R.S.: Dynamic wave dispersion and loss properties of conventional and negative Poisson’s ratio polymeric cellular materials. Cell. Polym. 8(5), 343–359 (1989)

    Google Scholar 

  29. Yang, J.F.C., Lakes, R.S.: Experimental study of micropolar and couple stress elasticity in bone in bending. J. Biomech. 15, 91–98 (1982)

    Article  Google Scholar 

  30. Lakes, R.S.: Size effects and micromechanics of a porous solid. J. Mater. Sci. 18, 2572–2581 (1983)

    Article  Google Scholar 

  31. Mora, R., Waas, A.M.: Measurement of the Cosserat constant of circular cell polycarbonate honeycomb. Philos. Mag. 80, 1699–1713 (2000)

    Article  Google Scholar 

  32. Rueger, Z., Lakes, R.S.: Experimental Cosserat elasticity in open cell polymer foam. Philos. Mag. 96(2), 93–111 (2016)

    Article  Google Scholar 

  33. Rueger, Z., Lakes, R.S.: Cosserat elasticity of negative Poisson’s ratio foam: experiment. Smart Mater. Struct. 25. 054004 (2016)

  34. Rueger, Z., Lakes, R.S.: Experimental study of elastic constants of a dense foam with weak Cosserat coupling. J. Elast. 137, 101–115 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rueger, Z., Lakes, R.S.: Strong Cosserat elasticity in a transversely isotropic polymer lattice. Phys. Rev. Lett. 120, 065501 (2018)

    Article  Google Scholar 

  36. Merkel, A., Tournat, V.: Experimental evidence of rotational elastic waves in granular phononic crystals. Phys. Rev. Lett. 107(22), 225502 (2011)

    Article  Google Scholar 

  37. Lakes, R.S., Gorman, D., Bonfield, W.: Holographic screening method for microelastic solids. J. Mater. Sci. 20, 2882–2888 (1985)

    Article  Google Scholar 

  38. Lakes, R.S.: Reduced warp in torsion of reticulated foam due to Cosserat elasticity: experiment. Zeitschrift fuer Angewandte Mathematik und Physik (ZAMP) 67(3), 1–6 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Lakes, R.S., Drugan, W.J.: Bending of a Cosserat elastic bar of square cross section—theory and experiment. J. Appl. Mech. 82(9), 091002 (2015)

  40. Lakes, R.S.: Cosserat shape effects in the bending of foams. Mech. Adv. Mater. Struct. https://doi.org/10.1080/15376494.2022.2086328

  41. Reasa, D.R., Lakes, R.S.: Nonclassical chiral elasticity of the gyroid lattice. Phys. Rev. Lett. 125, 205502 (2020)

    Article  Google Scholar 

  42. Brezny, R., Green, D.J.: Characterization of edge effects in cellular materials. J. Mater. Sci. 25(11), 4571–4578 (1990)

    Article  Google Scholar 

  43. Burteau, A., NGuyen, F., Bartout, J.D., Forest, S., Bienvenu, Y., Saberi, S., Naumann, D.: Impact of material processing and deformation on cell morphology and mechanical behavior of polyurethane and nickel foams. Int. J. Solids Struct. 49, 2714–2732 (2012)

  44. Chen, C.P., Lakes, R.S.: Dynamic wave dispersion and loss properties of conventional and negative Poisson’s ratio polymeric cellular materials. Cell. Polym. 8(5), 343–359 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Lakes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakes, R.S. Experimental evaluation of micromorphic elastic constants in foams and lattices. Z. Angew. Math. Phys. 74, 31 (2023). https://doi.org/10.1007/s00033-022-01923-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01923-5

Mathematics Subject Classification

Navigation