Skip to main content
Log in

On global solutions to some non-Markovian quantum kinetic models of Fokker–Planck type

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, global well-posedness of the non-Markovian Unruh–Zurek and Hu–Paz–Zhang master equations with nonlinear electrostatic coupling is demonstrated. They both consist of a Wigner–Poisson like equation subjected to a dissipative Fokker–Planck mechanism with time-dependent coefficients of integral type, which makes necessary to take into account the full history of the open quantum system under consideration to describe its present state. From a mathematical viewpoint this feature makes particularly elaborated the calculation of the propagators that take part of the corresponding mild formulations, as well as produces rather strong decays near the initial time (\(t=0\)) of the magnitudes involved, which would be reflected in the subsequent derivation of a priori estimates and a significant lack of Sobolev regularity when compared with their Markovian counterparts. The existence of local-in-time solutions is deduced from a Banach fixed point argument, while global solvability follows from appropriate kinetic energy estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ambegaokar, V.: Quantum Brownian motion and its classical limit. Ber. Bunsenges. Phys. Chem. 95(3), 400–404 (1991)

    Google Scholar 

  2. Arnold, A.: Self-consistent relaxation-time models in quantum mechanics. Commun. Partial Differ. Equ. 21, 473–506 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Arnold, A., Dhamo, E., Mancini, C.: The Wigner–Poisson–Fokker–Planck system: global-in-time solution and dispersive effects. Ann. Inst. Henri Poincare 24(4), 645–676 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Arnold, A., López, J.L., Markowich, P.A., Soler, J.: An analysis of Wigner–Fokker–Planck models: a Wigner function approach. Rev. Mat. Iberoam. 20, 771–814 (2004)

    MATH  Google Scholar 

  5. Breuer, H.-P., Laine, E.-M., Piilo, J., Vacchini, B.: Colloquium: non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016)

    Google Scholar 

  6. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  7. Caldeira, A.O., Leggett, A.J.: Path integral approach to quantum Brownian motion. Physica A 121, 587–616 (1983)

    MathSciNet  MATH  Google Scholar 

  8. Cañizo, J.A., López, J.L., Nieto, J.: Global \(L^1\) theory and regularity for the 3D nonlinear Wigner–Poisson–Fokker–Planck system. J. Differ. Equ. 198(2), 356–373 (2004)

    MATH  Google Scholar 

  9. Carlesso, M., Bassi, A.: Adjoint master equation for quantum Brownian motion. Phys. Rev. A 95(5), 052119 (2017)

    MathSciNet  Google Scholar 

  10. Castella, F., Erdös, L., Frommlet, F., Markowich, P.A.: Fokker–Planck equations as scaling limits of reversible quantum systems. J. Stat. Phys. 100(3/4), 543–601 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Chen, H.-B., Chiu, P.-Y., Cheng, Y.-C., Chen, Y.-N.: Vibration-induced coherence enhancement of the performance of a biological quantum heat engine. Phys. Rev. E 94, 052101 (2016)

    Google Scholar 

  12. Chen, H.-B., Lambert, N., Cheng, Y.-C., Chen, Y.-N., Nori, F.: Using non-Markovian measures to evaluate quantum master equations for photosynthesis. Sci. Rep. 5, 12753 (2015)

    Google Scholar 

  13. Davies, E.B.: Quantum Theory of Open Systems. Academic Press, New York (1976)

    MATH  Google Scholar 

  14. De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 15001 (2017)

    MathSciNet  Google Scholar 

  15. Diósi, L.: Caldeira–Leggett master equation and medium temperatures. Physica A 199, 517–526 (1993)

    Google Scholar 

  16. Diósi, L.: On high-temperature Markovian equation for quantum Brownian motion. Europhys. Lett. 22, 1–3 (1993)

    Google Scholar 

  17. Frensley, W.R.: Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 62(3), 745–791 (1990)

    Google Scholar 

  18. Halliwell, J.J., Yu, T.: Alternative derivation of the Hu–Paz–Zhang master equation of quantum Brownian motion. Phys. Rev. D 53, 2012–2019 (1996)

    MathSciNet  Google Scholar 

  19. Hörhammer, C., Büttner, H.: Decoherence and disentanglement scenarios in non-Markovian quantum Brownian motion. J. Phys. A Math. Theor. 41(26), 265301 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Hu, B.L., Paz, J.P., Zhang, Y.: Quantum Brownian motion in a general environment: exact master equation with nonlocal dissipation and colored noise. Phys. Rev. D 45(8), 2843–2861 (1992)

    MathSciNet  MATH  Google Scholar 

  21. Jin, J., Wei-Yuan Tu, M., Zhang, W.-M., Yan, Y.: Non-equilibrium theory for nanodevices based on the Feynman–Vernon influence functional. New J. Phys. 12, 083013 (2010)

    Google Scholar 

  22. Karrlein, R., Grabert, H.: Exact time evolution and master equations for the damped harmonic oscillator. Phys. Rev. A 55, 153–164 (1997)

    Google Scholar 

  23. Kossakowski, A.: On necessary and sufficient conditions for a generator of a quantum dynamical semi-group. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astr. Phys. 20(12), 1021–1025 (1972)

    MathSciNet  Google Scholar 

  24. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)

    MathSciNet  MATH  Google Scholar 

  25. Lions, P.L., Paul, T.: Sur les mesures de Wigner. Rev. Mat. Iberoam. 9, 553–618 (1993)

    MathSciNet  MATH  Google Scholar 

  26. López, J.L., Nieto, J.: Global solutions of the mean-field, very high temperature Caldeira–Leggett master equation. Q. Appl. Math. 64(1), 189–199 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Maniscalco, S., Intravaia, F., Piilo, J., Messina, A.: Misbelief and misunderstandings on the non-Markovian dynamics of a damped harmonic oscillator. J. Opt. B Quantum Semiclass. Opt. 6(3), S98–S103 (2004)

    Google Scholar 

  28. Maniscalco, S., Olivares, S., Paris, M.G.A.: Entanglement oscillations in non-Markovian quantum channels. Phys. Rev. A 75, 062119 (2007)

    Google Scholar 

  29. Maniscalco, S., Piilo, J., Intravaia, F., Petruccione, F., Messina, A.: Lindblad and non-Lindblad type dynamics of a quantum Brownian particle. Phys. Rev. A 70, 032113 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Mitrinović, D.S., Pecarić, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Springer, Dordrecht (1991)

    MATH  Google Scholar 

  31. O’Connell, R.F.: Wigner distribution function approach to dissipative problems in quantum mechanics with emphasis on decoherence and measurement theory. J. Opt. B Quantum Semiclass Opt. 5, S349–S359 (2003)

    Google Scholar 

  32. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, 2nd edn. Springer, New York (1992)

    MATH  Google Scholar 

  33. Rivas, A., Huelga, S.: Open Quantum Systems: An Introduction. Springer Briefs in Physics. Springer, Berlin (2012)

    MATH  Google Scholar 

  34. Romero, L.D., Paz, J.P.: Decoherence and initial correlations in quantum Brownian motion. Phys. Rev. A 55, 4070–4083 (1997)

    MathSciNet  Google Scholar 

  35. Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin (2007)

    Google Scholar 

  36. Stachurska, B.: On a nonlinear integral inequality. Zeszyzy Nauk Univ. Jagiellonskiego 252 Prace Mat. 15, 151–157 (1971)

    MathSciNet  MATH  Google Scholar 

  37. Stein, A.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  38. Thorwart, M., Eckel, J., Reina, J.H., Nalbach, P., Weiss, S.: Enhanced quantum entanglement in the non-Markovian dynamics. Chem. Phys. Lett. 478, 234–237 (2009)

    Google Scholar 

  39. Unruh, W.G., Zurek, W.H.: Reduction of a wave packet in quantum Brownian motion. Phys. Rev. D 40(4), 1071–1094 (1989)

    MathSciNet  Google Scholar 

  40. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1993)

    MATH  Google Scholar 

  41. Yu, T., Diósi, L., Gisin, N., Strunz, W.T.: Post-Markov master equation for the dynamics of open quantum systems. Phys. Lett. A 265, 331–336 (2000)

    MathSciNet  MATH  Google Scholar 

  42. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author would like to thank Departamento de Matemática Aplicada of University of Granada (Spain) and IMUS of the University of Sevilla (Spain), where part of this work was completed, for its kind hospitality and support. He was funded by Product. CNPq grant (Brazil) no. 305205/2016-1 and VI PPIT-US program ref. I3C. The second author was supported in part by MINECO (Spain), Project MTM2014-53406-R, FEDER resources, as well as by Junta de Andalucía Project P12-FQM-954. The referees are kindly acknowledged for pointing out some ideas which have contributed to improve an earlier version of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Alejo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This Appendix is devoted to show the complete positivity of the Brownian dynamics described by the approximation of the HPZ model given in Sect. 2.2. To this purpose we make use of the sufficient and necessary condition derived in [9], which in turn is based on the positivity of a certain \(2 \times 2\) matrix \(\Psi _t\) describing the evolution of the generator of the Weyl algebra (in a units system in which \(\hbar = m = 1\)), namely,

$$\begin{aligned} \Psi _t= & {} \left( \begin{array} {cc} - 2 \phi _1(t) &{} - \phi _3(t) \\ - \phi _3(t) &{} - 2 \phi _2(t) \end{array} \right) + \frac{i}{2} \left( \begin{array} {cc} 0 &{} 1 \\ - 1 &{} 0 \end{array} \right) \\&- \, \frac{i}{2} \left( \begin{array} {cc} G_1(t) &{} G_2(t) \\ G_1'(t) &{} G_2'(t) \end{array} \right) \left( \begin{array} {cc} 0 &{} 1 \\ - 1 &{} 0 \end{array} \right) \left( \begin{array} {cc} G_1(t) &{} G_1'(t) \\ G_2(t) &{} G_2'(t) \end{array} \right) . \end{aligned}$$

This positivity property is of course reduced to the positivity of its trace and determinant, which are respectively given by

$$\begin{aligned} {\hbox {tr}}(\Psi _t)= & {} -2 \big ( \phi _1(t) + \phi _2(t)\big ) , \\ {\hbox {det}}(\Psi _t)= & {} 4 \phi _1(t) \phi _2(t) - \phi _3(t)^2 - \frac{1}{4} (1 - F(t))^2 , \end{aligned}$$

with

$$\begin{aligned} F(t) = G_1(t) G_2'(t) - G_1'(t) G_2(t) . \end{aligned}$$

Here,

$$\begin{aligned} G_1(t) = G_2'(t) , \quad G_2(t) = {\mathcal {L}}^{-1} \left[ \frac{1}{s^2 + \Omega ^2 + 2 \int \limits _0^\infty \frac{I(\omega )}{\omega } \, \mathrm{d}\omega + {\mathcal {L}}[D(t)](s)} \right] (t) \end{aligned}$$

are the Green functions describing the evolution of the position and momentum operators of the system, where (\({\mathcal {L}}^{-1}\)) \({\mathcal {L}}\) denotes the (inverse) Laplace transform and where

$$\begin{aligned} D(t) = 2 \int \limits _0^\infty I(\omega ) \sin (\omega t) \, \mathrm{d}\omega , \end{aligned}$$

\(I(\omega )\) being the Drude-Lorentz spectral function defined in (14). Also,

$$\begin{aligned} \phi _1(t)= & {} - \frac{1}{4} \int \limits _0^t \int \limits _0^t D_1(t'-s) G_2(t-t') G_2(t-s) \, \mathrm{d}s \, \mathrm{d}t' , \end{aligned}$$
(62)
$$\begin{aligned} \phi _2(t)= & {} - \frac{1}{4} \int \limits _0^t \int \limits _0^t D_1(t'-s) G_1(t-t') G_1(t-s) \, \mathrm{d}s \, \mathrm{d}t' , \end{aligned}$$
(63)
$$\begin{aligned} \phi _3(t)= & {} - \frac{1}{2} G_2(t) \int \limits _0^t D_1(s) G_2(t-s) \, \mathrm{d}s , \end{aligned}$$
(64)

where

$$\begin{aligned} D_1(t) = 2 \int \limits _0^\infty I(\omega ) \coth \left( \frac{\beta \omega }{2} \right) \cos (\omega t) \, \mathrm{d}\omega . \end{aligned}$$

Step 1: Computation of \(G_2\). Under our approximation (cf. Sect. 2.2) we have

$$\begin{aligned} D(t) = \delta \pi \Gamma ^2 e^{-\Gamma t} , \quad D_1(t) = \frac{2\delta \pi \Gamma }{\beta } e^{-\Gamma t} . \end{aligned}$$

Then \({\mathcal {L}}[e^{-\Gamma t}](s) = \frac{\delta \pi \Gamma ^2}{\Gamma + s}\), and thus we can compute \(G_2\) as

$$\begin{aligned} G_2(t) = {\mathcal {L}}^{-1} \left[ \frac{s + \Gamma }{s^3 + \Gamma s^2 + (\Omega ^2 + \delta \pi \Gamma )s + \Omega ^2 \Gamma } \right] (t) , \end{aligned}$$

where we used that \(\int \limits _0^\infty \frac{I(\omega )}{\omega } \, \mathrm{d}\omega = \frac{\delta \pi \Gamma }{2}\). To compute the inverse Laplace transform we factorize the polynomial in the denominator as

$$\begin{aligned} s^3 + \Gamma s^2 + (\Omega ^2 + \delta \pi \Gamma )s + \Omega ^2 \Gamma = (s-r)(s-z)(s-\overline{z}) , \end{aligned}$$

where r is the unique real root and \(z = - \frac{1}{2} \big ( \lambda + i \sqrt{4 \mu - \lambda ^2} \big )\), with

$$\begin{aligned} \lambda = r + \Gamma , \quad \mu = r^2 + \Omega ^2 + (r + \pi \delta ) \Gamma . \end{aligned}$$

After expansion in powers of the parameters \(\Omega \) and \(\Gamma \) up to fourth order, r reads

$$\begin{aligned} r = r_9 \Gamma ^{\frac{7}{2}} -r_8 \Gamma ^3 + r_7 \Gamma ^{\frac{5}{2}} - r_6 \Gamma ^2 + r_5 \Gamma ^{\frac{3}{2}} + r_4 \Omega ^2 \Gamma ^{\frac{3}{2}} - r_3 \Omega ^2 \Gamma + r_2 \Omega ^2 \Gamma ^{\frac{1}{2}} - r_1 \Omega ^2 \Gamma ^{-\frac{1}{2}} - r_0 \Omega ^2 \end{aligned}$$

with

$$\begin{aligned}&r_0 = \frac{1}{2\pi \delta } , \quad r_1 = \frac{1}{\sqrt{3 \pi \delta }} , \quad r_2 = \frac{5}{6 \sqrt{3 \pi ^3 \delta ^3}} , \quad r_3 = \frac{7}{18 \pi ^2 \delta ^2} , \quad r_4 = \frac{55}{144 \sqrt{3 \pi ^5 \delta ^5}} , \\&r_5 = \frac{1}{12 \sqrt{3\pi \delta }} , \quad r_6 = \frac{1}{24 \pi \delta } , \quad r_7 = \frac{1}{16 \sqrt{3 \pi ^3 \delta ^3}} , \quad r_8 = \frac{7}{288 \pi ^2 \delta ^2} , \quad r_9 = \frac{67}{2592 \sqrt{3 \pi ^5 \delta ^5}} , \end{aligned}$$

while

$$\begin{aligned} \sqrt{4 \mu - \lambda ^2} = - \left( p_8 \Gamma ^{\frac{7}{2}} + p_7 \Gamma ^3 + p_6 \Gamma ^{\frac{5}{2}} - p_5 \Gamma ^2 + p_4 \Gamma + p_3 \Omega ^2 - p_2 \Omega ^2 \Gamma ^{\frac{1}{2}} - p_1 \Omega ^2 \Gamma + p_0 \Omega ^2 \Gamma ^{\frac{3}{2}}\right) ^{\frac{1}{2}} \end{aligned}$$

with

$$\begin{aligned}&p_0 = 2 (r_2 - 3 r_0 r_5 - 3 r_1 r_6) , \quad p_1 = 2 (r_0 + 3 r_1 r_5) , \quad p_2 = 2 r_1 , \quad p_3 = 4 , \quad p_4 = 4 \pi \delta , \\&p_5 = 1 , \quad p_6 = 2 r_5 , \quad p_7 = 3 r_5^2 + 2 r_6 , \quad p_8 = 2(r_7 + 3r_5 r_6) . \end{aligned}$$

We can now decompose

$$\begin{aligned} \frac{s + \Gamma }{s^3 + \Gamma s^2 + (\Omega ^2 + \delta \pi \Gamma )s + \Omega ^2 \Gamma } = \frac{A}{s-r} + \frac{\frac{\mu A - \Gamma }{r} - A s}{(s-z)(s-\overline{z})} \end{aligned}$$

with

$$\begin{aligned} A = \frac{r + \Gamma }{\mu + r(r + \lambda )} = \frac{r+\Gamma }{3r^2 + \Omega ^2 + (2r + \pi \delta ) \Gamma }, \end{aligned}$$

so that \(G_2\) becomes

$$\begin{aligned} G_2(t) = A e^{rt} + \frac{(2\mu + \lambda r)A - 2 \Gamma }{r \sqrt{4 \mu - \lambda ^2}} e^{- \frac{\lambda }{2} t} \sin \left( \frac{\sqrt{4 \mu - \lambda ^2}}{2} t\right) - A e^{- \frac{\lambda }{2} t}\cos \left( \frac{\sqrt{4 \mu - \lambda ^2}}{2} t\right) . \end{aligned}$$

Step 2: Computation of \(\phi _1\), \(\phi _2\), \(\phi _3\), and\({\hbox {tr}}(\Psi _t)\). Following (62) we have

$$\begin{aligned} \phi _1(t)= & {} - \frac{\pi \delta \Gamma }{2 \beta } \int \limits _0^t \int \limits _0^t e^{-\Gamma (t'-s)} G_2(t-t') G_2(t-s) \, \mathrm{d}s \, \mathrm{d}t' \\= & {} - \frac{\pi \delta \Gamma }{2 \beta } \left( \int \limits _0^t e^{-\Gamma s} G_2(s) \, \mathrm{d}s \right) \left( \int \limits _0^t e^{\Gamma s} G_2(s) \, \mathrm{d}s \right) = - \frac{\pi \delta \Gamma }{2 \beta } \Theta _1(t) , \end{aligned}$$

with

$$\begin{aligned} \Theta _1(t) = \left( \int \limits _0^t G_2(s) \, \mathrm{d}s \right) ^2 + \Gamma ^2 \left[ \left( \int \limits _0^t G_2(s) \, \mathrm{d}s \right) \left( \int \limits _0^t s^2 G_2(s) \, \mathrm{d}s \right) - \left( \int \limits _0^t s G_2(s) \, \mathrm{d}s \right) ^2 \right] . \end{aligned}$$

The computation of \(\phi _2\) starting from (63) is analogous, by just changing \(G_2\) to \(G_1\) (thus, \(\Theta _1\) to \(\Theta _2\)). We then find

$$\begin{aligned} {\hbox {tr}}(\Psi _t) = \frac{\pi \delta \Gamma }{2 \beta } \big ( \Theta _1(t) + \Theta _2(t) \big ) , \end{aligned}$$

with

$$\begin{aligned} \Theta _1(t) + \Theta _2(t)= & {} G_2(t)^2 + (1 - \Gamma ^2) \left( \int \limits _0^t G_2(s) \, \mathrm{d}s \right) ^2 \\&+ \, 2 \Gamma ^2 G_2(t) \left( t \int \limits _0^t G_2(s) \, \mathrm{d}s - \int \limits _0^t s G_2(s) \, \mathrm{d}s \right) \\&+ \, \Gamma ^2 \left( \left( \int \limits _0^t G_2(s) \, \mathrm{d}s \right) \left( \int \limits _0^t s^2 G_2(s) \, \mathrm{d}s \right) -\left( \int \limits _0^t s G_2(s) \, \mathrm{d}s\right) ^2 \right) , \end{aligned}$$

which yields the following eighth degree polynomial

$$\begin{aligned} {\hbox {tr}}(\Psi _t)=\widetilde{e}_8 t^8 + \widetilde{e}_7 t^7 + \widetilde{e}_6 t^6 + \widetilde{e}_5 t^5 + \widetilde{e}_4 t^4 + \widetilde{e}_3 t^3 + \widetilde{e}_2 t^2 + \widetilde{e}_1 t + \widetilde{e}_0 , \end{aligned}$$

where

$$\begin{aligned}&\widetilde{e}_8= \frac{\pi ^3 \delta ^3 \Gamma ^3}{640 \beta } , \quad \widetilde{e}_7= \frac{13 \pi ^{\frac{3}{2}} \delta ^{\frac{3}{2}} \Gamma ^{\frac{7}{2}} }{8640 \sqrt{3} \beta } - \frac{11 \pi ^{\frac{3}{2}} \delta ^{\frac{3}{2}} \Omega ^2 \Gamma ^{\frac{3}{2}} }{720 \sqrt{3} \beta } + \frac{13 \pi ^2 \delta ^2 \Gamma ^3 }{720 \beta } , \\&\widetilde{e}_6 = \frac{173 \sqrt{\pi \delta } \Gamma ^{\frac{7}{2}} }{8640 \sqrt{3} \beta } + \frac{\pi ^3 \delta ^3 \Gamma ^3 }{45 \beta } + \frac{17 \pi \delta \Gamma ^3 }{160 \beta } -\frac{163 \sqrt{\pi \delta } \Omega ^2 \Gamma ^{\frac{3}{2}} }{1440 \sqrt{3} \beta } - \frac{\pi ^2 \delta ^2 \Gamma ^2 }{48 \beta }, \\&\widetilde{e}_5 = \frac{11 \pi ^{\frac{3}{2}} \delta ^{\frac{3}{2}} \Gamma ^{\frac{7}{2}}}{720 \sqrt{3} \beta } + \frac{\sqrt{3} \Gamma ^{\frac{7}{2}}}{32 \beta \sqrt{\pi \delta }} +\frac{\Gamma ^{\frac{7}{2}}}{144 \sqrt{3 \pi \delta } \beta } + \frac{11 \pi ^2 \delta ^2 \Gamma ^3}{60 \beta } +\frac{49 \Gamma ^3}{144 \beta } - \frac{\sqrt{\pi \delta } \Gamma ^{\frac{5}{2}} }{72 \sqrt{3} \beta } \\&\quad - \, \frac{\pi \delta \Gamma ^2}{6 \beta } - \frac{\pi ^{\frac{3}{2}} \delta ^{\frac{3}{2}} \Omega ^2 \Gamma ^{\frac{3}{2}}}{6 \sqrt{3} \beta } -\frac{47 \Omega ^2 \Gamma ^{\frac{3}{2}}}{72 \sqrt{3 \pi \delta } \beta } + \frac{ \Omega ^2 \Gamma }{24 \beta } +\frac{\sqrt{\pi \delta } \Omega ^2 \Gamma ^{\frac{1}{2}} }{12 \sqrt{3} \beta } ,\\&\widetilde{e}_4 = \frac{7 \sqrt{\pi \delta } \Gamma ^{\frac{7}{2}} }{48 \sqrt{3} \beta } + \frac{373 \Gamma ^{\frac{7}{2}}}{1728 \sqrt{3 \pi ^3 \delta ^3} \beta } +\frac{17 \pi \delta \Gamma ^3}{12 \beta } + \frac{167 \Gamma ^3}{324 \pi \delta \beta } -\frac{17 \Gamma ^{\frac{5}{2}}}{144 \sqrt{3 \pi \delta } \beta } - \frac{\pi ^2 \delta ^2 \Gamma ^2}{6 \beta } \\&\quad - \, \frac{7 \Gamma ^2}{12 \beta } - \frac{5 \sqrt{\pi \delta } \Omega ^2 \Gamma ^{\frac{3}{2}}}{6 \sqrt{3} \beta } - \frac{271 \Omega ^2 \Gamma ^{\frac{3}{2}}}{144 \sqrt{3 \pi ^3 \delta ^3} \beta } + \frac{17 \Omega ^2 \Gamma }{54 \pi \delta \beta } +\frac{\pi \delta \Gamma }{8 \beta } + \frac{7 \Omega ^2 \Gamma ^{\frac{1}{2}}}{12 \sqrt{3 \pi \delta } \beta } ,\\&\widetilde{e}_3 = \frac{91 \Gamma ^{\frac{7}{2}}}{1728 \sqrt{3 \pi ^5 \delta ^5} \beta } +\frac{223 \Gamma ^{\frac{7}{2}}}{288 \sqrt{3 \pi \delta } \beta } +\frac{175 \Gamma ^3}{864 \pi ^2 \beta \delta ^2}+\frac{713 \Gamma ^3}{144 \beta } -\frac{5 \sqrt{\pi \delta } \Gamma ^{\frac{5}{2}}}{72 \sqrt{3} \beta } - \frac{7 \Gamma ^{\frac{5}{2}}}{16 \sqrt{3 \pi ^3 \delta ^3} \beta } \\&\quad -\frac{5 \pi \delta \Gamma ^2}{6 \beta } -\frac{25 \Gamma ^2}{24 \pi \delta \beta } -\frac{161\Omega ^2 \Gamma ^{\frac{3}{2}} }{216 \sqrt{3 \pi ^5 \delta ^5} \beta } -\frac{11 \Omega ^2 \Gamma ^{\frac{3}{2}}}{3 \sqrt{3 \pi \delta } \beta } + \frac{\Gamma ^{\frac{3}{2}}}{12 \sqrt{3 \pi \delta } \beta } + \frac{7 \Omega ^2 \Gamma }{12 \pi ^2 \delta ^2 \beta } + \frac{\Omega ^2 \Gamma }{4 \beta } + \frac{\Gamma }{\beta } \\&\quad + \, \frac{\Omega ^2 \Gamma ^{\frac{1}{2}} }{ \sqrt{3 \pi ^3 \delta ^3} \beta } + \frac{\sqrt{\pi \delta } \Omega ^2 \Gamma ^{\frac{1}{2}} }{2 \sqrt{3} \beta } ,\\&\widetilde{e}_2 = - \frac{49 \Gamma ^{\frac{7}{2}}}{216 \sqrt{3 \pi ^7 \delta ^7} \beta } + \frac{31 \Gamma ^{\frac{7}{2}}}{24 \sqrt{3 \pi ^3 \delta ^3} \beta } + \frac{157 \Gamma ^3}{864 \pi ^3 \delta ^3 \beta } + \frac{749 \Gamma ^3}{144 \pi \delta \beta } - \frac{31 \Gamma ^{\frac{5}{2}}}{72 \sqrt{3 \pi ^5 \delta ^5} \beta } - \frac{5 \Gamma ^{\frac{5}{2}}}{12 \sqrt{3 \pi \delta } \beta } \\&\quad - \, \frac{35 \Gamma ^2}{216 \pi ^2 \delta ^2 \beta } - \frac{2 \Gamma ^2}{\beta } - \frac{ 73 \Omega ^2 \Gamma ^{\frac{3}{2}} }{12 \sqrt{3 \pi ^3 \delta ^3} \beta } + \frac{\Gamma ^{\frac{3}{2}}}{3 \sqrt{3 \pi ^3 \delta ^3} \beta } + \frac{13 \Omega ^2 \Gamma }{12 \pi \delta \beta } + \frac{\pi \delta \Gamma }{2 \beta } + \frac{2 \Gamma }{\pi \delta \beta } +\frac{2 \Omega ^2 \Gamma ^{\frac{1}{2}}}{\sqrt{3 \pi \delta } \beta } ,\\&\widetilde{e}_1 = \frac{91 \Gamma ^{\frac{7}{2}}}{864 \sqrt{3 \pi ^5 \delta ^5} \beta } +\frac{175 \Gamma ^3}{432 \pi ^2 \delta ^2 \beta } - \frac{7 \Gamma ^{\frac{5}{2}}}{8 \sqrt{3 \pi ^3 \delta ^3} \beta } -\frac{25 \Gamma ^2}{12 \pi \delta \beta } - \frac{161 \Omega ^2 \Gamma ^{\frac{3}{2}} }{108 \sqrt{3 \pi ^5 \delta ^5} \beta } + \frac{\Gamma ^{\frac{3}{2}}}{6 \sqrt{3 \pi \delta } \beta } \\&\quad + \frac{7 \Omega ^2 \Gamma }{6 \pi ^2 \delta ^2 \beta } +\frac{2 \Gamma }{\beta } + \frac{2 \Omega ^2 \Gamma ^{\frac{1}{2}}}{\sqrt{3 \pi ^3 \delta ^3} \beta } ,\\&\widetilde{e}_0 = - \frac{49 \Gamma ^{\frac{7}{2}}}{216 \sqrt{3 \pi ^7 \delta ^7} \beta } + \frac{157 \Gamma ^3}{864 \pi ^3 \delta ^3 \beta } - \frac{31 \Gamma ^{\frac{5}{2}}}{72 \sqrt{3 \pi ^5 \delta ^5} \beta } - \frac{35 \Gamma ^2}{216 \pi ^2 \delta ^2 \beta } + \frac{\Gamma ^{\frac{3}{2}}}{3 \sqrt{3 \pi ^3 \delta ^3} \beta } +\frac{2 \Gamma }{\pi \delta \beta } . \end{aligned}$$

The polynomial returns positive values for a wide range of choices of the physical parameters. For instance, by choosing \(\beta = 0.1 \delta \) and \(\Gamma = \delta ^{\frac{3}{4}}\), and varying the oscillator frequency below and above the cut-off frequency as (i) \(\Omega = 0.3 \Gamma \), (ii) \(\Omega = \Gamma \) and (iii) \(\Omega = 1.3 \Gamma \), we find that the trace becomes positive for positive times provided that (i) \(0.02< \delta < 0.7\), (ii) \(0.02< \delta < 0.96\), and (iii) \(0.02< \delta < 1\). Notice that here we have considered as positivity criterium the fact that the minimum of the (\(\delta \)-dependent) trace function be strictly positive.

Finally, from (64) we compute

$$\begin{aligned} \phi _3(t)= & {} - \frac{\pi \delta \Gamma }{\beta } G_2(t) \\\times & {} \left( \left( \frac{\Gamma ^2}{2} t^2 - \Gamma t + 1 \right) \int \limits _0^t G_2(s) \, \mathrm{d}s + \Gamma (1 - \Gamma t) \int \limits _0^t s G_2(s) \, \mathrm{d}s + \frac{\Gamma ^2}{2} \int \limits _0^t s^2 G_2(s) \, \mathrm{d}s \right) . \end{aligned}$$

Step 3: Computation of \({\hbox {det}}(\Psi _t)\). We first calculate

$$\begin{aligned}&\Delta (t) := 4 \phi _1(t) \phi _2(t) - \phi _3(t)^2 = \frac{\pi ^2 \delta ^2 \Gamma ^2}{\beta ^2} \Big ( \int \limits _0^t G_1(s) \, \mathrm{d}s \Big )^2 \Big ( \int \limits _0^t G_2(s) \, \mathrm{d}s \Big )^2 \\&- \frac{\pi ^2 \delta ^2 \Gamma ^2}{\beta ^2} G_2(t)^2 \left( (1-2 \Gamma t) \Big ( \int \limits _0^t G_2(s) \, \mathrm{d}s\Big )^2 + 2 \Gamma \left( \int \limits _0^t G_2(s) \, \mathrm{d}s \right) \ \left( \int \limits _0^t s G_2(s) \, \mathrm{d}s \right) \right) , \end{aligned}$$

and use that \(G_1 = G_2'\) to certify that

$$\begin{aligned} \Delta (t) = \frac{2 \pi ^2 \delta ^2 \Gamma ^3}{\beta ^2} G_2(t)^2 \left( t \left( \int \limits _0^t G_2(s) \, \mathrm{d}s \right) ^2 - \left( \int \limits _0^t G_2(s) \, \mathrm{d}s \right) \left( \int \limits _0^t s G_2(s) \, \mathrm{d}s \right) \right) . \end{aligned}$$

Finally, the determinant can be expressed as

$$\begin{aligned} {\hbox {det}}(\Psi _t)= & {} \Delta (t) - \frac{1}{4} \big ( 1 + G_2(t) G_2''(t) - G_2'(t) \big )^2 \\= & {} \frac{2 \pi ^2 \delta ^2 \Gamma ^3}{\beta ^2} G_2(t)^2 \left( t \left( \int \limits _0^t G_2(s) \, \mathrm{d}s \right) ^2 - \left( \int \limits _0^t G_2(s) \, \mathrm{d}s \right) \left( \int \limits _0^t s G_2(s) \, \mathrm{d}s \right) \right) \\&- \frac{1}{4} \big ( 1 + G_2(t) G_2''(t) - G_2'(t) \big )^2 , \end{aligned}$$

which results in a seventh degree polynomial whose coefficients depend upon the physical parameters \(\delta \), \(\beta \), \(\Omega \) and \(\Gamma \) in the following way:

$$\begin{aligned} {\hbox {det}}(\Psi _t)=e_7 t^7 + e_6 t^6 + e_5 t^5 + e_4 t^4 + e_3 t^3 + e_2 t^2 + e_1 t + e_0 , \end{aligned}$$

with

$$\begin{aligned}&e_7 = \frac{\pi ^2 \delta ^2 \Gamma ^3}{6 \beta ^2} , \quad e_6 = \frac{7 \sqrt{\pi \delta } \Gamma ^{\frac{7}{2}}}{36 \sqrt{3} \beta ^2} + \frac{7 \pi \delta \Gamma ^3}{3 \beta ^2} , \quad e_5= \frac{17 \Gamma ^{\frac{7}{2}}}{9 \sqrt{3 \pi \delta } \beta ^2} + \frac{34 \Gamma ^3}{3 \beta ^2} ,\\&e_4 = \frac{17 \Gamma ^{\frac{7}{2}}}{3 \sqrt{3 \pi ^3 \delta ^3} \beta ^2 } + \frac{\sqrt{\pi \delta } \Gamma ^{\frac{7}{2}}}{36 \sqrt{3}} +\frac{68 \Gamma ^3}{3 \pi \delta \beta ^2} +\frac{\pi \delta \Gamma ^3}{6} + \frac{\sqrt{\pi \delta } \Omega ^2 \Gamma ^{\frac{3}{2}}}{6 \sqrt{3}} ,\\&e_3 = \frac{16 \Gamma ^{\frac{7}{2}}}{3 \sqrt{3 \pi ^5 \delta ^5} \beta ^2} +\frac{23 \Gamma ^{\frac{7}{2}}}{144 \sqrt{3 \pi \delta }} +\frac{16 \Gamma ^3}{\pi ^2 \delta ^2 \beta ^2} +\frac{3 \Gamma ^3}{4} +\frac{\Omega ^2 \Gamma ^{\frac{3}{2}}}{4 \sqrt{3 \pi \delta } } , \\&e_2 = \frac{127 \Gamma ^{\frac{7}{2}}}{576\sqrt{3 \pi ^3 \delta ^3}} + \frac{1331 \Gamma ^3}{1728 \pi \delta } - \frac{\Gamma ^{\frac{5}{2}}}{24 \sqrt{3 \pi \delta }} -\frac{\Gamma ^2}{4} + \frac{29 \Omega ^2 \Gamma ^{\frac{3}{2}}}{12 \sqrt{3 \pi ^3 \delta ^3}} -\frac{19 \Omega ^2 \Gamma }{72 \pi \delta } - \frac{\Omega ^2 \Gamma ^{\frac{1}{2}}}{2 \sqrt{3 \pi \delta }} , \\&e_1 = \frac{37 \Gamma ^{\frac{7}{2}}}{5184 \sqrt{3 \pi ^5 \delta ^5}} -\frac{\Gamma ^3}{27 \pi ^2 \delta ^2} + \frac{\Gamma ^{\frac{5}{2}}}{12 \sqrt{3 \pi ^3 \delta ^3}} - \frac{31 \Omega ^2 \Gamma ^{\frac{3}{2}}}{12 \sqrt{\pi ^5 \delta ^5}} , \\&e_0 = \frac{17 \Gamma ^{\frac{7}{2}}}{2592 \sqrt{3 \pi ^7 \delta ^7}} -\frac{\Gamma ^3}{432 \pi ^3 \delta ^3} + \frac{\Omega ^2 \Gamma ^{\frac{3}{2}}}{216 \sqrt{3 \pi ^7 \delta ^7} } . \end{aligned}$$

Requiring its positivity for positive times provides us with a wide range of choices within our approximation. Indeed, by choosing the same relations among the parameters as before, the positivity of the determinant holds for (i) \(0.02< \delta < 0.66\), (ii) \(0.02< \delta < 0.26\), and (iii) \(0.02< \delta < 0.22\), with the same positivity criterium as for the trace (Fig. 2).

Fig. 2
figure 2

Graphical visualization of the functions \({\hbox {tr}}(\Psi _t)\) (left-hand side) and \({\hbox {det}}(\Psi _t)\) (right-hand side) for the following choices of the physical parameters in the HPZ equation: \(\beta = 0.1 \delta \), \(\Gamma = \delta ^{\frac{3}{4}}\), \(\delta =0.15\) and for different time intervals. The dashed/full/dotted lines correspond to the cases \(\Omega = 0.3 \Gamma \), \(\Omega = \Gamma \) and \(\Omega = 1.3 \Gamma \), respectively

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alejo, M.A., López, J.L. On global solutions to some non-Markovian quantum kinetic models of Fokker–Planck type. Z. Angew. Math. Phys. 71, 72 (2020). https://doi.org/10.1007/s00033-020-01295-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01295-8

Keywords

Mathematics Subject Classification

Navigation