Skip to main content
Log in

Limiting behavior and local uniqueness of normalized solutions for mass critical Kirchhoff equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider the \(L^2\)-norm prescribed ground states of the Kirchhoff equations involving mass critical exponent with a Lagrange multiplier \(\mu \in {\mathbb {R}}\),

$$\begin{aligned} \left\{ \begin{aligned}&-\left( a+b\int _{{\mathbb {R}}^N} |\nabla u|^2dx\right) \Delta u+V(x)u=\mu u+u^{\frac{8}{N}+1}\quad \text {in }{\mathbb {R}}^N,\\&\int _{{\mathbb {R}}^N} |u|^2dx=c^2, \;\;c>0, \end{aligned} \right. \end{aligned}$$
(0.1)

where \(a\ge 0\), \(b>0\), \(N=1,2,3\), and the function \(V(x)\in L_{loc}^\infty ({\mathbb {R}}^N)\) is a trapping potential satisfying \(\min _{x\in {\mathbb {R}}^N} V(x)=0\), \(V(x)\rightarrow +\infty \) as \(|x|\rightarrow +\infty \). It has been shown by researchers that there exists a couple of ground state solution \((u_a, \mu _a)\) to (0.1) if \(c=c_*:=(\frac{b\Vert Q\Vert _2^{8/N}}{2})^{\frac{N}{8-2N}}\) for small \(a>0\), where \(Q>0\) is the unique radially symmetric positive solution of equation \(2\Delta Q+\frac{N-4}{N}Q+Q^{\frac{8}{N}+1}=0\) in \({\mathbb {R}}^N\). We devote to the refined limiting profiles of \(u_a\) as \(a\rightarrow 0\) by using energy estimates and blow-up analysis. In order to get the concentration behavior of \(u_a\), we first study the existence and non-existence of solutions to a degenerate Kirchhoff equation i.e. the case \(a=0\) in (0.1). At last, we investigate the local uniqueness of ground states \(u_a\) included by concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Arcoya, D.: Positive solutions of elliptic Kirchhoff equations. Adv. Nonlinear Stud. 17(1), 3–15 (2017)

    Article  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Rational Mech. Anal. 140(3), 285–300 (1997)

    Article  MathSciNet  Google Scholar 

  3. Alves, C.O., Corrêa, F.J.S.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49(1), 85–93 (2005)

    Article  MathSciNet  Google Scholar 

  4. Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Models 6(1), 1–135 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bartsch, T., Qiang Wang, Z.: Existence and multiplicity results for some superlinear elliptic problems on \({R^N}\). Comm. Partial Differ. Equ. 20(9–10), 1725–1741 (1995)

    Article  Google Scholar 

  6. Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185(2), 185–200 (2007)

    Article  MathSciNet  Google Scholar 

  7. Carrier, G.F.: On the non-linear vibration problem of the elastic string. Quart. Appl. Math. 3, 157–165 (1945)

    Article  MathSciNet  Google Scholar 

  8. Carrier, G.F.: A note on the vibrating string. Q. Appl. Math. 7, 97–101 (1949)

    Article  MathSciNet  Google Scholar 

  9. Cao, D., Heinz, H.P.: Uniqueness of positive multi-lump bound states of nonlinear Schrödinger equations. Math. Z. 243(3), 599–642 (2003)

    Article  MathSciNet  Google Scholar 

  10. Cao, D., Li, S., Luo, P.: Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 54(4), 4037–4063 (2015)

    Article  Google Scholar 

  11. Colasuonno, F., Pucci, P.: Multiplicity of solutions for \(p(x)\)-polyharmonic elliptic Kirchhoff equations. Nonlinear Anal. 74(17), 5962–5974 (2011)

    Article  MathSciNet  Google Scholar 

  12. Deng, Y., Peng, S., Shuai, W.: Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \(\mathbb{R}^3\). J. Funct. Anal. 269(11), 3500–3527 (2015)

    Article  MathSciNet  Google Scholar 

  13. Deng, Y., Lin, C.S., Yan, S.: On the prescribed scalar curvature problem in \(RN\), local uniqueness and periodicity. J. Math. Pures Appl. 104(6), 1013–1044 (2015)

    Article  MathSciNet  Google Scholar 

  14. D’Ancona, P., Spagnolo, S.: Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math. 108(2), 247–262 (1992)

    Article  MathSciNet  Google Scholar 

  15. Figueiredo, G.M., Ikoma, N., Junior, J.R.S.: Existence and concentration result for the Kirchhoff type equations with general nonlinearities. Arch. Ration. Mech. Anal. 213(3), 931–979 (2014)

    Article  MathSciNet  Google Scholar 

  16. Grossi, M.: On the number of single-peak solutions of the nonlinear Schrödinger equation Ann. Inst. H. Poincaré Anal. Non Linéaire 19(3), 261–280 (2002)

    Article  MathSciNet  Google Scholar 

  17. Guo, Y., Lin, C., Wei, J.: Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose-Einstein condensates. SIAM J. Math. Anal. 49(5), 3671–3715 (2017)

    Article  MathSciNet  Google Scholar 

  18. Guo, Y., Seiringer, R.: On the mass concentration for Bose-Einstein condensates with attractive interactions. Lett. Math. Phys. 104(2), 141–156 (2014)

    Article  MathSciNet  Google Scholar 

  19. Guo, Y., Wang, Z.Q., Zeng, X., Zhou, H.S.: Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials. Nonlinearity 31(3), 957–979 (2018)

    Article  MathSciNet  Google Scholar 

  20. Guo, Y., Zeng, X., Zhou, H.S.: Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials. Ann. Inst. H. Poincaré Anal. Non. Linéaire 33(3), 809–828 (2016)

    Article  MathSciNet  Google Scholar 

  21. Gidas, B., Ni, W.M. and Nirenberg, L. Symmetry of positive solutions of nonlinear elliptic equations in \({\bf R}^{n}\), Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York-London, 1981, pp. 369–402

  22. Guo, Y., Peng, S., Yan, S.: Local uniqueness and periodicity induced by concentration. Proc. Lond. Math. Soc. 114(6), 1005–1043 (2017)

    Article  MathSciNet  Google Scholar 

  23. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, 2nd edn. Springer-Verlag, Berlin (1983)

    MATH  Google Scholar 

  24. Guo, H., Zhou, H.S.: Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete Contin. Dyn. Syst. 41(3), 1023–1050 (2021)

    Article  MathSciNet  Google Scholar 

  25. Hu, T., Shuai, W.: Multi-peak solutions to Kirchhoff equations in \(\mathbb{R}^3\) with general nonlinearity. J. Differ. Equ. 265(8), 3587–3617 (2018)

    Article  Google Scholar 

  26. He, X., Zou, W.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \(\mathbb{R}^3\). J. Differ. Equ. 252(2), 1813–1834 (2012)

    Article  Google Scholar 

  27. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \({ R}^n\). Arch. Rational Mech. Anal. 105(3), 243–266 (1989)

    Article  MathSciNet  Google Scholar 

  28. Lions, J.-L.: On some questions in boundary value problems of mathematical physics, Contemporary developments in continuum mechanics and partial differential equations, North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam-New York, pp. 284–346 (1978)

  29. Li, G., Luo, P., Peng, S., Wang, C., Xiang, C.L.: A singularly perturbed Kirchhoff problem revisited. J. Differ. Equ. 268(2), 541–589 (2020)

    Article  MathSciNet  Google Scholar 

  30. Li, G., Ye, H.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \(\mathbb{R}^3\). J. Differ. Equ. 257(2), 566–600 (2014)

    Article  Google Scholar 

  31. Li, G., Ye, H.: On the concentration phenomenon of \(L^2\)-subcritical constrained minimizers for a class of Kirchhoff equations with potentials. J. Differ. Equ. 266(11), 7101–7123 (2019)

    Article  Google Scholar 

  32. Oh, Y.G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys. 131(2), 223–253 (1990)

    Article  MathSciNet  Google Scholar 

  33. Oplinger, D.W.: Frequency response of a nonlinear stretched string. J. Acoust. Soc. Amer. 32, 1529–1538 (1960)

    Article  MathSciNet  Google Scholar 

  34. Pucci, P., Radulescu, V.D.: Progress in nonlinear Kirchhoff problems. Nonlinear Anal. 186, 1–5 (2019)

    Article  MathSciNet  Google Scholar 

  35. Pitaevskii, L. and Stringari, S.: Sandro: Bose-Einstein condensation, International Series of Monographs on Physics, vol. 116. The Clarendon Press, Oxford University Press, Oxford (2003)

  36. Perera, K., Zhang, Z.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221(1), 246–255 (2006)

    Article  MathSciNet  Google Scholar 

  37. Junior, J.R.S., Siciliano, G.: Positive solutions for a Kirchhoff problem with vanishing nonlocal term. J. Differ. Equ. 265(5), 2034–2043 (2018)

    Article  MathSciNet  Google Scholar 

  38. Tang X.H., Chen S.T.: Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials. Calc. Var. Partial Differ. Equ. 56(4), 110 (2017).

  39. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys. 153(2), 229–244 (1993)

    Article  MathSciNet  Google Scholar 

  40. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87(4), 567–576 (1982)

    Article  MathSciNet  Google Scholar 

  41. Ye, H.: The existence of normalized solutions for \(L^2\)-critical constrained problems related to Kirchhoff equations. Z. Angew. Math. Phys. 66(4), 1483–1497 (2015)

    Article  MathSciNet  Google Scholar 

  42. Ye, H.: The mass concentration phenomenon for \(L^2\)-critical constrained problems related to Kirchhoff equations. Z. Angew. Math. Phys. 67(2), 29 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Lei Tang.

Additional information

Communicated by M. del Pino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding author. This research was supported by National Nature Science Foundation of China under grands No. 11901473 and No. 11971393.

Appendix A

Appendix A

We give the rigorous definition of the ground states of (1.1) with fixed \(a>0\) and \(\mu <0\). First of all, the associated energy functional \(J_{a,\mu }(u):{\mathcal {H}}\rightarrow {\mathbb {R}}\) is given by

$$\begin{aligned} J_{a,\mu }(u)= & {} \frac{1}{2}\int _{{\mathbb {R}}^N}a|\nabla u|^2+\left( V(x)-\mu \right) u^2dx+\frac{b}{4}\left( \int _{{\mathbb {R}}^N}|\nabla u|^2dx\right) ^2\\&-\frac{1}{2q+2}\int _{{\mathbb {R}}^N}|u|^{2q+2}dx. \end{aligned}$$

If \(u\in {\mathcal {H}}\setminus \{0\}\) satisfies \(\langle J_{a,\mu }'(u), \varphi \rangle =0\) for any \(\varphi \in {\mathcal {H}}\), then u is a nontrivial weak solution to (1.1). Define

$$\begin{aligned} {\mathcal {S}}_{a,\mu }=\{u(x): \;u\text { is a nontrivial solution to } (1.1)\text { with fixed }a>0, \mu <0\}, \end{aligned}$$

and

$$\begin{aligned} {\mathcal {G}}_{a,\mu }=\{u(x)\in {\mathcal {S}}_{a,\mu }:\; J_{a,\mu }(u)\le J_{a,\mu }(v)\text { for any }v\in {\mathcal {S}}_{a,\mu }\}. \end{aligned}$$
(A.1)

Therefore, we say \(u\in {\mathcal {H}}\) is a ground state solution to (1.1) if \(u\in {\mathcal {G}}_{a,\mu }\). According to the constraint minimization problem (1.2) in the case \(c=c_*\), we denote by \({\mathcal {M}}_{a}\) the collection of all minimizers,

$$\begin{aligned} {\mathcal {M}}_{a}=\{u\in {\mathcal {H}}:\;u\text { is a minimizer of } e(a,c_*)\}. \end{aligned}$$
(A.2)

Under the assumptions \((V_2)\) and \((V_3)\), Theorem 1.3 shows that there exists \(a_*>0\), such that if \(0<a<a_*\) the set \(\mathcal M_{a}\) contains only one component \(u_a\) satisfying with the Lagrange multiplier \(\mu _a<0\),

$$\begin{aligned} -\left( a+b\int _{{\mathbb {R}}^N}|\nabla u_a|^2dx\right) \Delta u_a+V(x)u_a=\mu _a u_a+u_a^{2q+1}\quad \hbox { in}\ {\mathbb {R}}^N. \end{aligned}$$
(A.3)

Now, we adapt a similar argument in [19] to show the relationship \({\mathcal {M}}_a={\mathcal {G}}_{a,\mu _a}\) for \(0<a<a_*\). This can be viewed as a interesting application of the local uniqueness of \(u_a\). Let u be a ground state solution of (1.1) with \(\mu =\mu _a\), we know that

$$\begin{aligned} \begin{aligned} E_a(u)=&2J_{a,\mu _a}(u)+ \mu _a\int _{{\mathbb {R}}^N}|u|^2dx\\ 4J_{a,\mu _a}(u)=&\int _{{\mathbb {R}}^N}a|\nabla u|^2+\left( V(x)-\mu _a\right) u^2dx+\frac{q-1}{q+1}\int _{{\mathbb {R}}^N}|u|^{2q+2}dx. \end{aligned} \end{aligned}$$
(A.4)

Set \({\bar{u}}=\rho u\) where \(\rho =\frac{c_*}{\Vert u\Vert _2}\), then \(\int _{{\mathbb {R}}^N}|{\bar{u}}|^2dx=c_*^2\). Since \(u_a\) is a minimizer of \(e(a,c_*)\) and \(u\in {\mathcal {G}}_{a,\mu _a}\), we obtain that

$$\begin{aligned} E_{a}(u_a)\le E_a({\bar{u}})\quad \text {and}\quad J_{a,\mu _a}(u)\le J_{a,\mu _a}(u_a). \end{aligned}$$

From (A.4) one has

$$\begin{aligned} J_{a,\mu _a}(u)\le J_{a,\mu _a}(u_a)\le J_{a,\mu _a}(\bar{u})=J_{a,\mu _a}(\rho u). \end{aligned}$$
(A.5)

On the other hand, we define

$$\begin{aligned} \begin{aligned} f(\rho ):=J_{a,\mu _a}(\rho u)=&\frac{\rho ^2}{2}\int _{{\mathbb {R}}^N}a|\nabla u|^2+\left( V(x)-\mu _a\right) u^2dx\\&+\frac{b\rho ^4}{4}\left( \int _{{\mathbb {R}}^N}|\nabla u|^2dx\right) ^2-\frac{\rho ^{2q+2}}{2q+2}\int _{{\mathbb {R}}^N}|u|^{2q+2}dx.\\ \end{aligned} \end{aligned}$$

It’s not hard to see \(f(\rho )\in C(0,+\infty )\) has only one maximum point at \(\rho =1\). Hence we deduce from (A.5) that \(\Vert u\Vert _2=c^*\) and \(u\in {\mathcal {M}}_a\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, T., Tang, CL. Limiting behavior and local uniqueness of normalized solutions for mass critical Kirchhoff equations. Calc. Var. 60, 210 (2021). https://doi.org/10.1007/s00526-021-02018-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02018-1

Mathematics Subject Classification

Navigation