Skip to main content
Log in

Spectral gaps for periodic piezoelectric waveguides

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We construct a family of periodic piezoelectric waveguides Πɛ, depending on a small geometrical parameter, with the following property: as ɛ → +0, the number of gaps in the essential spectrum of the piezoelectricity problem on Πɛ grows unboundedly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions 2. Commun. Pure Appl. Math. 17, 35–92 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bakharev F.L., Nazarov S.A., Ruotsalainen K.M.: A gap in the spectrum of the Neumann? Laplacian on a periodic waveguide. Appl. Anal. 88(9), 1889–1995 (2012)

    MathSciNet  Google Scholar 

  3. Bakharev F.L., Ruotsalainen K., Taskinen J.: Spectral gaps for the linear surface wave model in periodic channels. Q. J. Mech. Appl. Math. 67(3), 343–362 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  4. Birman M.S., Solomyak M.Z.: Spectral Theory of Self-Adjoint Operators in Hilbert space. Reidel Publishing Company, Dordrecht (1986)

    Book  Google Scholar 

  5. Borisov D.I., Pankrashkin K.V.: Quantum waveguides with small periodic perturbations: gaps and edges of Brillouin zones. J. Phys. A Math. Theor. 46, 1–18 (2013)

    Article  MathSciNet  Google Scholar 

  6. Borisov D.I., Pankrashkin K.V.: Gap Opening and Split Band Edges in Waveguides Coupled by a Periodic System of Small Windows. Math. Notes 93(5), 660–675 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cardone G., Minutolo V., Nazarov S.A., Perugia C.: Gaps in the essential spectrum of periodic elastic waveguides. Z. Angew. Math. Mech. 89(9), 729–741 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cardone G., Nazarov S.A., Perugia C.: A gap in the essential spectrum of a cylindrical waveguide with a periodic perturbation of the surface. Math. Nachr. 283(9), 1222–1244 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cardone G., Nazarov S.A., Sokolowski J.: Asymptotic analysis, polarization matrices and topological derivatives for piezoelectric materials with small voids. SIAM J. Control Optim. 48(6), 3925–3961 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Exner, P., Kuchment, P., Winn, B.: On the location of spectral edges in Z-periodic media. J. Phys. A. 43(47), id 474022 (2010)

  11. Harrison J., Kuchment P., Sobolev A., Winn B.: On occurrence of spectral edges for periodic operators inside the Brillouin zone. J. Phys. A. 40(27), 7597–7618 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gelfand I.M.: Expansion in characteristic functions of an equation with periodic coefficients (in Russian). Dokl. Akad. Nauk SSSR 73, 1117–1120 (1950)

    Google Scholar 

  13. Kondratiev, V.A., Oleinik, O.A.: Boundary-value problems for the system of elasticity theory in unbounded domains. Korn’s inequalities, Uspehi Mat. Nauk. 43(5), 55–98 (1988). (English transl. Russ. Math. Surveys 43(5), 65–119 (1988))

  14. Kuchment, P.: Floquet theory for partial differential equations (in Russian), Uspekhi Mat. Nauk 37(4), 3–52 (1982). (English transl. Russ. Math. Surveys 37(4), 1–60 (1982))

  15. Kuchment P.: Floquet Theory for Partial Differential Equations. Birchäuser, Basel (1993)

    Book  MATH  Google Scholar 

  16. Lindenstraudss J., Tzafriri L.: Classical Banach Spaces I. Spinger, Berlin (1977)

    Book  Google Scholar 

  17. Mazya, V.G.: Sobolev Spaces, Grundlehren der Mathematischen Wissenschaften 342. 2nd edn. Springer, Berlin (2010)

  18. Mazja, V.G., Nazarov, S.A., Plamenewski, B.A.: Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, Band 1. Akademie-Verlag, Berlin (1991). (English transl. Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, Vol. 1. Birkhäuser Verlag, Basel (2000))

  19. Nazarov, S.A.: Elliptic boundary value problems with periodic coefficients in a cylinder. Izv. Akad. Nauk SSSR. Ser. Mat. 45(1), 101–112 (1981). (English transl. Math. USSR. Izvestija 18(1), 89–98 (1982))

  20. Nazarov, S.A.: Uniform estimates of remainders in asymptotic expansions of solutions to the problem on eigen-oscillations of a piezoelectric plate, Probl. Mat. Analiz. 25, 99–188 (2003) (English transl. J. Math. Sci. 114(5), 1657–1725 (2003))

  21. Nazarov, S.A.: On the plurality of gaps in the spectrum of a periodic waveguide, Mat. Sbornik 201(4), 99–124 (2010) (English transl. Sb. Math. 201(4), 569–594 (2010))

  22. Nazarov, S.A.: A gap in the continuous spectrum of an elastic waveguide with partly clamped surface. Prikl. Mekh. Techn. Fizika 51(1), 134–146 (2010). (English transl. J. Appl. Mech. Techn. Physics 51(4), 114–124 (2010))

  23. Nazarov, S.A.: Opening a gap in the continuous spectrum of a periodically perturbed waveguide. Mat. Zametki 87(5), 764–786 (2010). (English transl. Math. Notes 87(5), 738–756 (2010))

  24. Nazarov, S.A.: Asymptotic behavior of spectral gaps in a regularly perturbed periodic waveguide. Vestnik St.-Petersburg Univ. 7(2), 54–63 (2013). (English transl. Vestnik St.-Petersburg Univ. Math. 46(2), 89–97 (2013))

  25. Nazarov, S.A.: Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains. In: Mazya, V.A. (eds.) Sobolev Spaces in Mathematics, vol. II. International Mathematical Series 9, pp. 261–309 (2008)

  26. Nazarov, S.A.: Korn’s inequalities for elastic junctions of massive bodies and thin plates and rods. Uspehi Mat. Nauk. 63(1), 143–217 (2008). (English transl. Russ. Math. Surveys. 63(1), 109–153 (2008))

  27. Nazarov S.A., Plamenevskii B.A.: Elliptic Problems in Domains with Piecewise Smooth Boundaries. Walter be Gruyter, Berlin (1994)

    Book  MATH  Google Scholar 

  28. Nazarov S.A., Ruotsalainen K., Taskinen J.: Essential spectrum of a periodic elastic waveguide may contain arbitrarily many gaps. Appl. Anal. 89(1), 109–124 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Pankrashkin K.: On the spectrum of a waveguide with periodic cracks. J. Phys. A 43(47), 474030 (2010)

    Article  MathSciNet  Google Scholar 

  30. Parton V.Z., Kudryavtsev B.A.: Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids. Gordon and Breach Science Publishers, New York (1988)

    Google Scholar 

  31. Suo Z., Kuo C.-M., Barnett D.M., Willis J.R.: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40(4), 739–765 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tiersten H.F.: Linear Piezoelectric Plate Vibrations. Plenum Press, New York (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jari Taskinen.

Additional information

The first named author was partially supported by RFFI, Grant 15-01-02175 and by the Academy of Finland Grant No. 127245. The second named author was partially supported by the Academy of Finland project “Functional analysis and applications” and the Väisälä Foundation of the Finnish Academy of Sciences and Letters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, S.A., Taskinen, J. Spectral gaps for periodic piezoelectric waveguides. Z. Angew. Math. Phys. 66, 3017–3047 (2015). https://doi.org/10.1007/s00033-015-0561-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0561-7

Mathematics Subject Classification

Keywords

Navigation