Skip to main content
Log in

A Type of Brézis–Oswald Problem to the \({\Phi}\)- Laplacian Operator with Very Singular Term

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this work we consider existence and uniqueness of solutions for a quasilinear elliptic problem, which may be singular at the origin. Furthermore, we consider a comparison principle for subsolutions and supersolutions just in \({W^{1, \Phi}_{loc} (\Omega)}\) to the problem

$$\left\{\begin{array}{ll}-\Delta_{\Phi}u=f(x,u)\, {\rm in}\, \Omega,\\u > 0\, {\rm in} \, \Omega, u = 0 \,{\rm on}\, \partial\Omega,\end{array}\right.$$

where f has \({\Phi}\)-sublinear growth. In our main results the function f(x, u) may be singular at u =  0 and the nonlinear term \({f(x, t)/t^{\ell-1}, t > 0}\) is strictly decreasing for a suitable \({\ell > 1}\). Under different kind of boundary conditions we prove an improvement for the classical Brézis-Oswald and Díaz-Sáa’s results in Orlicz- Sobolev framework for singular nonlinearities as well. Some results discussed here are news even for Laplacian or p-Laplacian operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R. A., Fournier J. F.: Sobolev Spaces. Academic Press, New York (2003)

    MATH  Google Scholar 

  2. Ambrosseti A., Brézis H., Cerami G.: Combined Effects of Concave and Convex Nonlinearities in Some Elliptic Problems. Journal of Functional Analysis 122(2), 519–543 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boccardo L., Casado-Díaz J.: Some properties of solutions of some semilinear elliptic singular problems and applications to the G-convergence. Asymptotic Analysis 86, 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Boccardo L., Murat F.: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. 19(6), 581–597 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boccardo L., Orsina L.: Semilinear elliptic equations with singular nonlinearities. Calc. Var. and PDE 37(3–4), 363–380 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brézis H., Oswald L.: Remarks on sublinear elliptic equations. Nonlinear Anal. 10, 55–64 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Canino A., Montoro L., Sciunzi B., Squassina M.: Nonlocal problems with singular nonlinearity. Bull. Sci. math. 141, 223–250 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Canino A., Sciunzi B.: A uniqueness result for some singular semilinear elliptic equations. Commun. Contemp. Math. 18, 1550084 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. A, Canino, B. Sciunzi, A. Trombetta, Existence and uniqueness for p-Laplace equations involving singular nonlinearities, Nonlinear Differ. Equ. Appl. (2016).

  10. Carvalho M. L. M., Gonçalves J.V.: Multivalued equations on a bounded domain via minimization on Orlicz–Sobolev spaces. Journal of Convex Analysis 21(1), 201–218 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Clément P., de Pagter B., Sweers G., de Thélin F.: Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces. Mediterr. J. Math. 1, 241–267 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crandall M.G., Rabinowitz P.H., Tartar L.: On a Dirichlet problem with a singular nonlinearity. Comm. Partial Differential Equations 2, 193–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. De Cave L. M.: Nonlinear elliptic equations with singular nonlinearities. Asymptotic Analysis 84, 181–195 (2013)

    MathSciNet  MATH  Google Scholar 

  14. J. L. Díaz, J. E. Sáa, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. C.R.A.S. de Paris t. 305, Serie I , (1987), 521–524.

  15. Fang F., Tan Z.: Existence and multiplicity of solutions for a class of quasilinear elliptic equations: An Orlicz-Sobolev space setting. Journal of Mathematical Analysis and Applications 389(1), 420–428 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fragnelli G., Mugnai D., Papageorgiou N.S.: The Brézis-Oswald result for quasilinear Robin problems. Adv. Nonlinear Stud. 16(3), 603–622 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fukagai N., Ito M., Narukawa K.: Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on \({\mathbb{R}^N}\). Funkcialaj Ekvacioj 49, 235–267 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fukagai N., Narukawa K.: On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems. Annali di Matematica 186(3), 539–564 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. García-Huidobro, V. K. Le, R. Manásevich, K. Schmitt, On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz-Sobolev space setting, Nonlinear differ. equ. appl. 6, (1999), 207–225.

  20. J. V. Goncalves, M. L. Carvalho & C. A. Santos, Quasilinear elliptic systems with convex-concave singular terms and \({\Phi}\) – Laplacian operator. Differential Integral Equations. 31, (2018), 231-256.

  21. Goncalves J.V.A., Santos C.A.P: Classical solutions of singular Monge-Ampére equations in a ball. J. Math. Anal. Appl. 305, 240–252 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gossez J.P.: Nonlinear elliptic boundary value problems for equations with raplidy (or slowly) incressing coefficients. Trans. Amer. Math. Soc. 190, 163–205 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. J. P. Gossez, Orlicz-Sobolev spaces and nonlinear elliptic boundary value problems, Nonlinear analysis, function spaces and applications, Proc. Spring School, Horni Bradlo, 1978 , Teubner, Leipzig, (1979), 59–94.

  24. Hu S., Wang H.: Convex solutions of boundary value problems arising from Monge-Ampére equations. Discrete Cont. Dyn. Systems 16, 705–720 (2006)

    Article  MATH  Google Scholar 

  25. A. Kristály, M. Mihailescu, V. Radulescu, Two non-trivial solutions for a nonhomogeneous Neumann problem: an Orlicz-Sobolev space setting, Proceedings of the Royal Society of Edinburgh, 139(A), (2009), 367–379.

  26. Lair A.V., Shaker A.W.: Classical and weak solutions of a singular semilinear elliptic problem. J. Math. Anal. Appl. 211, 371–385 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lazer A.C., McKenna P.J.: On a singular nonlinear elliptic boundary value problem. Proc. AMS 111, 721–730 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lazer A.C., McKenna P.J.: On Singular Boundary Value Problems for the Monge-Ampére Operator. J. Math. Anal. Appl. 197, 341–362 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lieberman G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12, 1203–1219 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lieberman G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equation. Comm. Partial Differential Equations 16, 311–361 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu J., Zhang Q., Zhao C.: Existence of positive solutions for p(x)-Laplacian equations with a singular nonlinear term. Electronic Journal of Differential Equations 155, 1–21 (2014)

    MathSciNet  Google Scholar 

  32. Mihailescu M., Repovs D.: Multiple solutions for a nonlinear and non-homogeneous problem in Orlicz-Sobolev spaces. Applied Mathematics and Computation 217, 6624–6632 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Montenegro, Existence of solutions to a singular elliptic equation, Milan J. Math. Vol. 79 (2011), 293-301.

  34. Orsina L., Petitta F.: A Lazer-McKenna type problem with measures. Differential Integral Equations 29, 19–36 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Pucci P., Serrin J.: The strong maximum principle revisited. J. Differential Equations. 196, 1–66 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rao M. N., Ren Z. D.: Theory of Orlicz Spaces. Marcel Dekker, New York (1985)

    MATH  Google Scholar 

  37. Tan Z., Fang F.: Orlicz-Sobolev versus Hölder local minimizer and multiplicity results for quasilinear elliptic equations. J. Math. Anal. Appl. 402, 348–370 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yijing S., Duanzhi Z.: The role of the power 3 for elliptic equations with negative exponents. Calc. Var. 49, 909–922 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Q. Zhang, Existence and Asymptotic Behavior of Positive Solutions to p(x)-Laplacian Equations with Singular Nonlinearities. Journal of Inequalities and Applications Volume 2007, Article ID 19349, 9 pages. https://doi.org/10.1155/2007/19349

  40. Zhang Z., Cheng J.: Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems. Nonlinear Analysis 57, 473–484 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.D. Silva.

Additional information

The authors were partially supported by Fapeg/CNpq grant 03/2015-PPP and CAPES/Brazil Proc. \({N^{o} \, 2788/2015 - 02}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, M., Goncalves, J., Silva, E. et al. A Type of Brézis–Oswald Problem to the \({\Phi}\)- Laplacian Operator with Very Singular Term. Milan J. Math. 86, 53–80 (2018). https://doi.org/10.1007/s00032-018-0279-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-018-0279-z

Keywords

Navigation