Skip to main content
Log in

UNIVERSAL GRAPH SCHUBERT VARIETIES

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We consider the loci of invertible linear maps f : ℂn → (ℂn)* together with pairs of flags (E, F) in ℂn such that the various restrictions f : Fj\( {E}_i^{\ast } \) have specified ranks. Identifying an invertible linear map with its graph viewed as a point in a Grassmannian, we show that the closures of these loci have cohomology classes represented by the back-stable Schubert polynomials of Lam, Lee, and Shimozono. As a special case, we recover the result of Knutson, Lam, and Speyer that Stanley symmetric functions represent the classes of graph Schubert varieties.

We consider similar loci where f is restricted to be symmetric or skew-symmetric. Their classes are now given by back-stable versions of the polynomials introduced by Wyser and Yong to represent classes of orbit closures for the orthogonal and symplectic groups acting on the type A flag variety. Using degeneracy locus formulas of Kazarian and of Anderson and Fulton, we obtain new Pfaffian formulas for these polynomials in the vexillary case. We also give a geometric interpretation of the involution Stanley symmetric functions of Hamaker, Marberg, and the author: they represent classes of involution graph Schubert varieties in isotropic Grassmannians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Anderson, Double Schubert polynomials and double Schubert varieties, https://people.math.osu.edu/anderson.2804/papers/geomschpolyn.pdf (2007).

  2. D. Anderson, W. Fulton, Chern class formulas for classical-type degeneracy loci, Compos. Math. 154 (2018), no. 8, 1746–1774.

    Article  MathSciNet  Google Scholar 

  3. D. Anderson, W. Fulton, Degeneracy loci, Pfaffians, and vexillary signed permutations in types B, C, and D, arXiv:1210.2066v1 (2012).

  4. E. Bagno, Y. Cherniavsky, Congruence B-orbits and the Bruhat poset of involutions of the symmetric group, Discrete Math. 312 (2012), no. 6, 1289–1299.

    Article  MathSciNet  Google Scholar 

  5. N. Bergeron, S. Billey, RC-graphs and Schubert polynomials, Experiment. Math. 2 (1993), no. 4, 257–269.

    Article  MathSciNet  Google Scholar 

  6. S. Billey, M. Haiman, Schubert polynomials for the classical groups, J. Amer. Math. Soc. 8 (1995), no. 2, 443–482.

    Article  MathSciNet  Google Scholar 

  7. S. Billey, W. Jockusch, R. P. Stanley, Some combinatorial properties of Schubert polynomials, J. Algebraic Combin. 2 (1993), 345–374.

    Article  MathSciNet  Google Scholar 

  8. A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. Math. 57 (1953), 115–207.

    Article  MathSciNet  Google Scholar 

  9. T. Bröcker, T. tom Dieck, Representations of Compact Lie Groups, Springer-Verlag, New York, 1985.

  10. Y. Cherniavsky, On involutions of the symmetric group and congruence B-orbits of anti-symmetric matrices, Internat. J. Algebra Comput. 21 (2011), no. 5, 841–856.

    Article  MathSciNet  Google Scholar 

  11. W. Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J. 65 (1992), no. 3, 381–420.

    Article  MathSciNet  Google Scholar 

  12. W. Fulton, Young Tableaux: With Applications to Representation Theory and Geometry, Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  13. Z. Hamaker, E. Marberg, B. Pawlowski, Schur P-positivity and involution Stanley symmetric functions, Int. Math. Res. Notices 2019 (2019), no. 17, 5389–5440.

    Article  MathSciNet  Google Scholar 

  14. Z. Hamaker, E. Marberg, B. Pawlowski, Involution words: counting problems and connections to Schubert calculus for symmetric orbit closures, J. Combin. Theory Ser. A 160 (2018), no. 1, 217–260.

    Article  MathSciNet  Google Scholar 

  15. Z. Hamaker, E. Marberg, B. Pawlowski, Transition formulas for involution Schubert polynomials, Selecta Math. (N.S.) 24 (2018), no. 4, 2991–3025.

  16. Z. Hamaker, E. Marberg, B. Pawlowski, Fixed-point-free involutions and Schur P-positivity, J. Combin. 11 (2020), no. 1, 65–110.

    MathSciNet  MATH  Google Scholar 

  17. A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2001.

    MATH  Google Scholar 

  18. X. He, K. Nishiyama, H. Ochiai, Y. Ōshima, On orbits in double flag varieties for symmetric pairs, Transform. Groups 18 (2013), 1091–1136.

    Article  MathSciNet  Google Scholar 

  19. J. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.

    Book  Google Scholar 

  20. V. N. Ivanov, Interpolation analogs of Schur Q-functions, J. Math. Sci. 131 (2005), 5495–5507.

    Article  MathSciNet  Google Scholar 

  21. M. Kazarian, On Lagrange and symmetric degeneracy loci, preprint.

  22. G. Kempf, D. Laksov, The determinantal formula of Schubert calculus, Acta Math. 132 (1974), 153–162.

    Article  MathSciNet  Google Scholar 

  23. A. Knutson, T. Lam, D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), 1710–1752.

    Article  MathSciNet  Google Scholar 

  24. T. Lam, S. J. Lee, M. Shimozono, Back stable Schubert calculus, Compos. Math. 157 (2021), 883–962.

    Article  MathSciNet  Google Scholar 

  25. A. Lascoux, M-P. Schützenberger, Polynômes de Schubert, C. R. Math. Acad. Sci. Paris 294 (1982), 447–450.

  26. A. Lascoux, M-P. Schützenberger, Schubert polynomials and the Littlewood–Richardson rule, Lett. Math. Phys. 10 (1985), 111–124.

  27. I. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, Oxford, 1995.

    MATH  Google Scholar 

  28. P. Pragacz, Algebro-geometric applications of Schur S- and Q-polynomials, in: Topics in Invariant Theory (Paris, 1989/1990), Lecture Notes in Math., Vol. 1478, Springer, Berlin, 1991, pp. 130–191.

  29. R. P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin. 5 (1984), no. 4, 359–372.

    Article  MathSciNet  Google Scholar 

  30. F. Szechtman, Equivalence and congruence of matrices under the action of standard parabolic subgroups, Electron. J. Lin. Alg. 16 (2007), 325–333.

    MathSciNet  MATH  Google Scholar 

  31. R. Vakil, A geometric Littlewood–Richardson rule, Ann. of Math (2) 164 (2006), no. 2, 371–421.

  32. M. Wachs, Flagged Schur functions, Schubert polynomials, and symmetrizing operators, J. Combin. Theory Ser. A 40 (1985), 276–289.

    Article  MathSciNet  Google Scholar 

  33. B. Wyser, K-orbit closures on G/B as universal degeneracy loci for flagged vector bundles with symmetric or skew-symmetric bilinear form, Transform. Groups 18 (2013), 557–594.

    Article  MathSciNet  Google Scholar 

  34. B. Wyser, A. Yong, Polynomials for symmetric orbit closures in the flag variety, Transform. Groups 22 (2017), 267–290.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BRENDAN PAWLOWSKI.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PAWLOWSKI, B. UNIVERSAL GRAPH SCHUBERT VARIETIES. Transformation Groups 26, 1417–1461 (2021). https://doi.org/10.1007/s00031-021-09677-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-021-09677-6

Navigation