Skip to main content
Log in

SEMISIMPLE CYCLIC ELEMENTS IN SEMISIMPLE LIE ALGEBRAS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

This paper is a continuation of the theory of cyclic elements in semisimple Lie algebras, developed by Elashvili, Kac and Vinberg. Its main result is the classification of semisimple cyclic elements in semisimple Lie algebras. The importance of this classification stems from the fact that each such element gives rise to an integrable hierarchy of Hamiltonian PDE of Drinfeld–Sokolov type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. А. В. Алексеевский, Группы компонент централизаторов унипотенмных элементов в полупростых алгебраических группах, Труды Тбилисского мат. инст. LXII (1979), 5–27. [A. V. Alekseevsky, Component groups of unipotent element centralizers in semisimple algebraic groups, Trudy Tbiliss. Mat. Inst. LXII (1979), 5–27 (in Russian)].

  2. D. H. Collingwood, W. M. McGovern, Nilpotent Orbits In Semisimple Lie Algebras, Van Nostrand Reinhold, 1993.

  3. J. Dadok, V. Kac, Polar representations, J. Algebra 92 (1985), no. 2, 504–524.

  4. W. A. de Graaf, SLA, a package for doing computations with simple Lie algebras, Version 1.3, https://www.gap-system.org/Packages/sla.html.

  5. A. De Sole, V. G. Kac, D. Valeri, Classical \( \mathcal{W} \)-algebras and generalized Drinfeld–Sokolov bi-hamiltonian systems within the theory of Poisson vertex algebras, Commun. Math. Phys. 323 (2013), no. 2, 663–711.

  6. В. Г. Дринфельд, В. В. Соколов, Алгебры Ли и уравнения типа Кортевега–де Фриза, Итоги науки и техн., Сер. Соврем. пробл. мат., Нов. достиж. 24 (1984), 81–180. Engl. transl.: V. G. Drinfeld, V. V. Sokolov, Lie algebras and equations of Korteweg–de Vries type, J. Sov. Math. 30 (1985), 1975–2084.

  7. A. G. Elashvili, V. G. Kac, E. B. Vinberg, Cyclic elements in semisimple lie algebras, Transform. Groups 18 (2013), 97–130.

  8. N. Elkies (https://mathoverflow.net/users/14830/noam-d-elkies), answer to Seeking a more symmetric realization of a configuration of 10 planes, 25 lines and 15 points in projective space, https://mathoverflow.net/q/313198/ (version: 2018-10-19).

  9. D. Fox (https://mathoverflow.net/users/9471/dan-fox), answer to Have you ever seen this bizarre commutative algebra?, https://mathoverflow.net/q/319405/ (version: 2018-12-24).

  10. The GAP Group, GAP–Groups, Algorithms, and Programming, Version 4.10.2, 2019, https://www.gap-system.org.

  11. K. Harada, On a commutative non-associative algebra associated with a doubly transitive group, J. Algebra 91 (1984), no. 1, 192–206.

  12. N. Jacobson, Structure and Representations of Jordan Algebras, AMS Colloquium Publications, Vol. 39, AMS, Providence, RI, 1968.

  13. В. Г. Кац, К вопросу об описании пространства орбит линейных алгебраических групп, УМН XXX (1975), 6, 173–174. [V. G. Kac, On the question of describing the orbit space of linear algebraic groups, Uspekhi Mat. Nauk 30 (1975), no. 6, 173–174 (in Russian)].

  14. V. G. Kac, Infinite-Dimensional Lie Algebras, 3rd edition, Cambridge University Press, Cambridge, UK, 1990.

  15. B. Kostant, The principal three-dimensional subgroup and the betti numbers of a complex simple lie group, American J. Math. 81 (1959), no. 4, 973–1032.

  16. Е. Н. Кузьмин, Алгебры Мальцева и их представления, Алгебра и логика 7 (1968), 48–69. Engl. transl.: E. N. Kuz’min, Mal’tsev algebras and their representations, Algebra and Logic 7 (1968), no. 4, 233–244.

  17. D. Luna, Sur les orbites fermées des groupes algébriques réductifs, Invent. Math. 16 (1972), no. 1, 1–5.

  18. T. S. Motzkin, O. Taussky, Pairs of matrices with property L. II, Trans. Amer. Math. Soc. 80 (1955), no. 2, 387–401.

  19. A. L. Onishchik, E. B. Vinberg, Lie Groups and Algebraic Groups, Springer Series in Soviet Mathematics, Springer, Berlin, 2012.

  20. A. A. Sagle, Simple Malcev algebras over fields of characteristic zero, Pacific J. Math. 12 (1962), no. 3, 1057–1078.

  21. V. V. Sokolov, private communication.

  22. T. A. Springer, Regular elements of finite reection groups, Invent. Math. 25 (1974), no. 2, 159–198.

  23. Э. Б. Винберг, Группа Вейля градуированной алгебры Ли, Изв. АН СССР, Сер. матем. 40 (1976), вып. 3, 488–526. Engl. transl.: E. B. Vinberg, The Weyl group of a graded Lie algebra, Math. USSR-Izvestiya 10 (1976), 463–495.

  24. S. Walcher, On algebras of rank three, Commun. Algebra 27 (1999), no. 7, 3401–3438.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. KAC.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M. Jibladze is partially supported by the grant FR-18-10849 of the Shota Rustaveli National Science Foundation of Georgia.

V. G. Kac is partially supported by the Simons Fellowship and by the Bert and Ann Kostant fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ELASHVILI, A.G., JIBLADZE, M. & KAC, V.G. SEMISIMPLE CYCLIC ELEMENTS IN SEMISIMPLE LIE ALGEBRAS. Transformation Groups 27, 429–470 (2022). https://doi.org/10.1007/s00031-020-09568-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-020-09568-2

Navigation