Skip to main content
Log in

ON CATEGORIES OF ADMISSIBLE (\( \mathfrak{g} \), sl(2))-MODULES

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let \( \mathfrak{g} \) be a complex finite-dimensional semisimple Lie algebra and \( \mathfrak{k} \) be any sl(2)-subalgebra of \( \mathfrak{g} \). In this paper we prove an earlier conjecture by Penkov and Zuckerman claiming that the first derived Zuckerman functor provides an equivalence between a truncation of a thick parabolic category \( \mathcal{O} \) for \( \mathfrak{g} \) and a truncation of the category of admissible (\( \mathfrak{g} \) , \( \mathfrak{k} \))-modules. This latter truncated category consists of admissible (\( \mathfrak{g} \) , \( \mathfrak{k} \))-modules with sufficiently large minimal \( \mathfrak{k} \)-type. We construct an explicit functor inverse to the Zuckerman functor in this setting. As a corollary we obtain an estimate for the global injective dimension of the inductive completion of the truncated category of admissible (\( \mathfrak{g} \) , \( \mathfrak{k} \))-modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Benkart, D. Britten, F. Lemire, Modules with bounded weight multiplicities for simple Lie algebras, Math. Z. 225 (1997), 333–353.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Bernstein, S. Gelfand, Tensor products of finite and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), 245–285.

    MathSciNet  MATH  Google Scholar 

  3. И. Н. Бернштейн, И. М. Гельфанд, С. И. Гельфанд, Об одной категории \( \mathfrak{g} \) -модулей, Фунц. анализ и его прил. 10 (1976), вьш. 2, 1–8. Engl. transl.: I. N. Bernstein, I. M. Gel’fand, S. Gel’fand, Category of \( \mathfrak{g} \) -modules, Functional. Anal. and Appl. 10 (1976), no. 2, 87–92.

  4. D. J. Britten, F. W. Lemire, A classification of simple Lie modules having a 1-dimensional weight space, Trans. Amer. Math. Soc. 299 (1987), 683–697.

    MathSciNet  MATH  Google Scholar 

  5. Е. Б. Дынкин, Полупростые подалгебры полупростых алгебр Ли, Матем. сб. 30(72) (1952), ном. 2, 349–462. Engl. transl.: E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Trans. Amer. Math. Soc. Ser. 2 (1957), no. 6, 111–244.

  6. T. J. Enright, On the fundamental series of a real semisimple Lie algebra, Ann. of Math. 110 (1979), 1–82.

    Article  MathSciNet  MATH  Google Scholar 

  7. T. J. Enright, N. R. Wallach, Notes on homological algebra and representations of Lie algebras, Duke Math. J. 47 (1980), 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Futorny, The Weight Representations of Semisimple Finite-Dimensional Lie Algebras, PhD thesis, Kiev University, 1987.

  9. S. Fernando, Lie algebra modules with finite dimensional weight spaces I, Trans. Amer. Math. Soc. 322 (1990), 757–781.

    MathSciNet  MATH  Google Scholar 

  10. И. М. Гелъфанд, Р. А. Минлос, З. Я. Шапиро, Представления группы вращений и группы Лоренца, и их применения, Наука, М., 1958. Engl. transl.: I. M. Gelfand, R. A. Minlos, Z. Ya. Shapiro, Representations of the Rotation and Lorentz Groups and Their Applications, (Pergamon, Oxford), Macmillan, New York, 1963.

  11. И. М. Гельфанд, В. А. Пономарёв, Категория модулей Хариш-Чандры над алгеброй Ли группы Лоренца, ДАН СССР 176 (1967), 243–246. Engl. transl.: I. Gelfand, V. Ponomarev, The category of Harish-Chandra modules over the Lie algebra of the Lorentz group, Soviet. Math. Doklady 8 (1967), no. 5, 1065–1068.

  12. D. Grantcharov, V. Serganova, Category of sp(2n)-modules with bounded weight multiplicities, Mosc. Math. J. 6 (2006), 119–134.

    MathSciNet  MATH  Google Scholar 

  13. D. Grantcharov, V. Serganova, Cuspidal representations of sl(n + 1), Adv. Math. 224 (2010), 1517–1547.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Hartshorne, On the de Rham cohomology of algebraic varieties, Inst. Hautes Etudes Sci. Publ. Math. 45 (1976), 5–99.

    MATH  Google Scholar 

  15. Harish-Chandra, Infinite irreducible representations of the Lorentz group, Proc. Royal Soc. of London, Series A 189 (1947), no. 1018, 372–401.

  16. A. W. Knapp, D. A. Vogan, Jr., Cohomological Induction and Unitary Representations, Princeton University Press, Princeton, NJ, 1995.

    Book  MATH  Google Scholar 

  17. O. Mathieu, Classification of irreducible weight modules, Annales de l’Institut Fourier 50 (2000), 537–592.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Petukhov, Bounded reductive subalgebras of sl n , Transform. Groups 16, 2011, 1173–1182.

    Article  MathSciNet  MATH  Google Scholar 

  19. I. Penkov, V. Serganova, On bounded generalized Harish-Chandra modules, Annales de l’Institut Fourier 62 (2012), 477–496.

    Article  MathSciNet  MATH  Google Scholar 

  20. I. Penkov, V. Serganova, G. Zuckerman, On the existence of (\( \mathfrak{g},\mathfrak{k} \))-modules of finite type, Duke Math. J. 125 (2004), 329–349.

    Article  MathSciNet  MATH  Google Scholar 

  21. I. Penkov, G. Zuckerman, Generalized Harish-Chandra modules with generic minimal \( \mathfrak{k} \) -type, Asian J. Math. 8 (2004), 795–812.

    Article  MathSciNet  MATH  Google Scholar 

  22. I. Penkov, G. Zuckerman, A construction of generalized Harish-Chandra modules with arbitrary minimal \( \mathfrak{k} \) -type, Canad. Math. Bull. 50 (2007), 603–609.

    Article  MathSciNet  MATH  Google Scholar 

  23. I. Penkov, G. Zuckerman, On the structure of the fundamental series of generalized Harish-Chandra modules, Asian J. Math. 16 (2012), 489–514.

    Article  MathSciNet  MATH  Google Scholar 

  24. I. Penkov, G. Zuckerman, Algebraic methods in the theory of generalized Harish-Chandra modules, in: Developments and Retrospectives in Lie Theory: Algebraic Methods, Developments in Mathematics, Vol. 38, Springer, Cham, 2014, pp. 331–350.

  25. D. Vogan, Representations of Real Reductive Lie Groups, Progress in Mathematics, Vol. 15, Birkhäuser, Boston, 1981.

  26. C. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, Vol. 38, Cambridge University Press, Cambridge, 1994.

  27. G. Zuckerman, Generalized Harish-Chandra modules, in: Highlights of Lie Algebraic Methods, Progress in Mathematics, Vol. 295, Birkhäuser/Springer, New York, 2012, pp. 123–143.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. PENKOV.

Additional information

2010 Mathematics Subject Classification. Primary: 17B10, 17B55.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PENKOV, I., SERGANOVA, V. & ZUCKERMAN, G. ON CATEGORIES OF ADMISSIBLE (\( \mathfrak{g} \), sl(2))-MODULES. Transformation Groups 23, 463–489 (2018). https://doi.org/10.1007/s00031-017-9458-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-017-9458-1

Key words

Navigation