Skip to main content
Log in

Non-radial scattering theory for nonlinear Schrödinger equations with potential

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper, we study a class of nonlinear Schrödinger equations (NLS) with potential

$$\begin{aligned} i\partial _t u +\Delta u - Vu = \pm |u|^\alpha u, \quad (t,x) \in \mathbb R\times \mathbb R^3, \end{aligned}$$

where \(\frac{4}{3}<\alpha <4\) and V is a Kato-type potential including the genuine Yukawa potential as a special case. By using variational analysis and interaction Morawetz estimates, we establish a scattering criterion for the equation with non-radial initial data. As a consequence, we prove the energy scattering for the focusing problem with data below the ground state threshold. Our result extends the recent works of Hong (Commun Pure Appl Anal 15(5):1571–1601, 2016) and Hamano and Ikeda (J Evolut Equ 20:1131–1172, 2020). As a by product of the scattering criterion and the concentration-compactness lemma à la P. L. Lions, we study long time dynamics of global solutions to the focusing problem with data at the ground state threshold. Our result is robust and can be applicable to show the energy scattering for the focusing NLS with Coulomb potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akahori, T., Nawa, H.: Blowup and scattering problems for the nonlinear Schrödinger equations. Kyoto J. Math. 53(3), 629–672 (2013)

    Article  MathSciNet  Google Scholar 

  2. Banica, V., Visciglia, N.: Scattering for NLS with a delta potential. J. Differ. Equ. 260(5), 4410–4439 (2016)

    Article  MathSciNet  Google Scholar 

  3. Carles, R.: On semi-classical limit of nonlinear quantum scattering, English, with English and French summaries. Ann. Sci. Éc. Norm. Supér. (4) 49(3), 711–756 (2016)

    Article  MathSciNet  Google Scholar 

  4. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10, xiv+323. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2003)

  5. Cazenave, T., Fang, D., Xie, J.: Scattering for the focusing energy-subcritical nonlinear Schrödinger equation. Sci. China Math. 54(10), 2037–2062 (2011)

    Article  MathSciNet  Google Scholar 

  6. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \({\mathbb{R}}^3\). Ann. of Math. (2) 167(3), 767–865 (2008)

    Article  MathSciNet  Google Scholar 

  7. Dinh, V.D.: On nonlinear Schrödinger equations with repulsive inverse-power potentials. Acta Appl. Math. 171, 14 (2021)

    Article  Google Scholar 

  8. Dinh, V.D.: Global dynamics for a class of inhomogeneous nonlinear Schrödinger equations with potential. Math. Nachr. (2021). https://doi.org/10.1002/mana.201900427

    Article  Google Scholar 

  9. Dinh, V.D.: A unified approach for energy scattering for focusing nonlinear Schrödinger equations. Discrete Contin. Dyn. Syst. 40(11), 6441–6471 (2020)

    Article  MathSciNet  Google Scholar 

  10. Dodson, B., Murphy, J.: A new proof of scattering below the ground state for the 3D radial focusing cubic NLS. Proc. Am. Math. Soc. 145(11), 4859–4867 (2017)

    Article  MathSciNet  Google Scholar 

  11. Dodson, B., Murphy, J.: A new proof of scattering below the ground state for the non-radial focusing NLS. Math. Res. Lett. 25(6), 1805–1825 (2018)

    Article  MathSciNet  Google Scholar 

  12. Duyckaerts, T., Holmer, J., Roudenko, S.: Scattering for the non-radial 3D cubic nonlinear Schrödinger equation. Math. Res. Lett. 15(6), 1233–1250 (2008)

    Article  MathSciNet  Google Scholar 

  13. Duyckaerts, T., Roudenko, S.: Threshold solutions for the focusing 3D cubic Schrödinger equation. Rev. Mat. Iberoam. 26(1), 1–56 (2010)

    Article  MathSciNet  Google Scholar 

  14. Forcella, L., Visciglia, N.: Double scattering channels for 1D NLS in the energy space and its generalization to higher dimensions. J. Differ. Equ. 264(2), 929–958 (2018)

    Article  MathSciNet  Google Scholar 

  15. Ginibre, J., Velo, G.: Scattering theory in the energy space for a class of nonlinear Schrödinger equations. J. Math. Pures Appl. (9) 64(4), 363–401 (1985)

    MathSciNet  MATH  Google Scholar 

  16. Goldberg, M.: Dispersive bounds for the three-dimensional Schrödinger equation with almost critical potentials. Geom. Funct. Anal. 16(3), 517–536 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Guevara, C.D.: Global behavior of finite energy solutions to the \(d\)-dimensional focusing nonlinear Schrödinger equation. Appl. Math. Res. Express 2, 177–243 (2014)

    MATH  Google Scholar 

  18. Hamano, M., Ikeda, M.: Global dynamics below the ground state for the focusing Schrödinger equation with a potential. J. Evolut. Equ. 20(3), 1131–1172 (2020)

    Article  Google Scholar 

  19. Hong, Y.: Scattering for a nonlinear Schrödinger equation with a potential. Commun. Pure Appl. Anal. 15(5), 1571–1601 (2016)

    Article  MathSciNet  Google Scholar 

  20. Holmer, J., Roudenko, S.: A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation. Commun. Math. Phys. 282(2), 435–467 (2008)

    Article  Google Scholar 

  21. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)

    Article  MathSciNet  Google Scholar 

  22. Kenig, C.E., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)

    Article  MathSciNet  Google Scholar 

  23. Killip, R., Murphy, J., Visan, M., Zheng, J.: The focusing cubic NLS with inverse-square potential in three space dimensions. Differ. Integral Equ. 30(3–4), 161–206 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Lafontaine, D.: Scattering for NLS with a potential on the line. Asymptot. Anal. 100(1–2), 21–39 (2016)

    Article  MathSciNet  Google Scholar 

  25. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I, English, with French summary. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145 (1984)

    Article  MathSciNet  Google Scholar 

  26. Lu, J., Miao, C., Murphy, J.: Scattering in \(H^1\) for the intercritical NLS with an inverse-square potential. J. Differ. Equ. 264(5), 3174–3211 (2018)

    Article  Google Scholar 

  27. Miao, C., Zhang, J., Zheng, J.: Nonlinear Schrödinger equation with coulomb potential. Preprint arxiv:1809.06685

  28. Mizutani, H.: Strichartz estimates for Schrödinger equations with slowly decaying potentials. J. Funct. Anal. 279(12), 108789 (2020)

    Article  MathSciNet  Google Scholar 

  29. Mizutani, H.: Wave operators on Sobolev spaces. Proc. Am. Math. Soc. 148(4), 1645–1652 (2020)

    Article  MathSciNet  Google Scholar 

  30. Tao, T., Visan, M., Zhang, X.: The nonlinear Schrödinger equation with combined power-type nonlinearities. Commun. Partial Differ. Equ. 32(7–9), 1281–1343 (2007)

    Article  Google Scholar 

  31. Xu, C., Zhao, T., Zheng, J.: Scattering for 3D cubic focusing NLS on the domain outside a convex obstacle revisited. Preprint arxiv:1812.09445

  32. Yukawa, H.: On the interaction of elementary particles I. Proc. Physico-Math. Soc. Jpn. 17, 48–57 (1935)

    MATH  Google Scholar 

  33. Zheng, J.: Focusing NLS with inverse square potential. J. Math. Phys. 59(11), 111502, 14 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01). The author would like to express his deep gratitude to his wife - Uyen Cong for her encouragement and support. The author would like to thank Takahisa Inui for pointing out Remark 1.3. The author would like to thank the reviewer for his/her helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Duong Dinh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we will show Remark 1.1. Let V be as in (1.4). We first compute

$$\begin{aligned} \Vert V\Vert _{L^q}&= |c| \Vert |x|^{-\sigma }e^{-a|x|}\Vert _{L^q} \\&= |c| \left( \int _{\mathbb R^3} |x|^{-q\sigma } e^{-aq|x|} dx\right) ^{\frac{1}{q}} \\&= |c| \left( 4\pi \int _0^\infty r^{2-q\sigma } e^{-aqr} dr \right) ^{\frac{1}{q}} \\&= |c| \left[ 4\pi (aq)^{q\sigma -3} \Gamma (3-q\sigma )\right] ^{\frac{1}{q}} \end{aligned}$$

which proves (1.5).

We now compute

$$\begin{aligned} \Vert V\Vert _{\mathcal {K}} = \sup _{x\in \mathbb R^3} \int _{\mathbb R^3} \frac{|V(y)|}{|x-y|} dy. \end{aligned}$$

Consider

$$\begin{aligned} \int \frac{|V(y)|}{|x-y|} dy = |c| \int \frac{e^{-a|y|}}{|y|^\sigma |x-y|} dy. \end{aligned}$$

In the case \(x=0\), we have

$$\begin{aligned} \int \frac{e^{-a|y|}}{|y|^{1+\sigma }} dy = 4\pi \int _0^\infty e^{-ar} r^{1-\sigma } dr = 4\pi a^{\sigma -2} \Gamma (2-\sigma ). \end{aligned}$$

In the case \(x \ne 0\), we write

$$\begin{aligned} \int \frac{e^{-a|y|}}{|y|^\sigma |x-y|} dy&= \int _0^\infty \int _{\mathbb S^2} \frac{e^{-ar}}{r^\sigma |x-r\theta |} r^2 dr d\theta \\&=\int _0^\infty e^{-ar} r^{1-\sigma } I(x,r) dr, \end{aligned}$$

where \(r = |y|\) and

$$\begin{aligned} I(x,r) = \int _{\mathbb S^2} \frac{1}{\left| \frac{x}{r} -\theta \right| } d\theta . \end{aligned}$$

Take \(A \in O(3)\) such that \(Ae_1 = \frac{x}{|x|}\) with \(e_1=(1,0,0)\), we see that

$$\begin{aligned} I(x,r) = \int _{\mathbb S^2} \frac{1}{\left| \frac{|x|}{r} Ae_1 - \theta \right| } d\theta = \int _{\mathbb S^2} \frac{1}{\left| \frac{|x|}{r} e_1 - \theta \right| } d\theta . \end{aligned}$$

By change of variables, we arrive

$$\begin{aligned} I(x,r)&= \int _{-1}^1 \int _{\sqrt{1-s^2} \mathbb S^1} \frac{d\eta }{\sqrt{\left( \frac{|x|}{r}-s \right) ^2 +|\eta |^2}} \frac{ds}{\sqrt{1-s^2}} \\&= \int _{-1}^1 \int _{\mathbb S^1} \frac{\sqrt{1-s^2} d\zeta }{\sqrt{\left( \frac{|x|}{r}-s \right) ^2 +1-s^2}} \frac{ds}{\sqrt{1-s^2}} \\&=|\mathbb S^1| \int _{-1}^1 \frac{ds}{\sqrt{\left( \frac{|x|}{r}-s \right) ^2 +1-s^2}} \\&= 2\pi \frac{r}{|x|} \left( \frac{|x|}{r} +1 - \left| \frac{|x|}{r}-1 \right| \right) \\&= \left\{ \begin{array}{cl} 4\pi &{}\text {if } |x| \le r, \\ 4\pi \frac{r}{|x|} &{}\text {if } |x|\ge r. \end{array} \right. \end{aligned}$$

It follows that

$$\begin{aligned} \int \frac{e^{-a|y|}}{|y|^\sigma |x-y|} dy&= \frac{4\pi }{|x|} \int _0^{|x|} e^{-ar} r^{2-\sigma } dr + 4\pi \int _{|x|}^\infty e^{-ar} r^{1-\sigma } dr \\&= 4\pi a^{2-\sigma } \Gamma (2-\sigma ) + 4\pi \left( \frac{1}{|x|}\int _0^{|x|} e^{-ar} r^{2-\sigma } dr - \int _0^{|x|} e^{-ar} r^{1-\sigma } dr\right) . \end{aligned}$$

Consider

$$\begin{aligned} f(\lambda ) = \frac{1}{\lambda } \int _0^\lambda e^{-ar} r^{2-\sigma } dr - \int _0^\lambda e^{-ar} r^{1-\sigma } dr, \quad \lambda >0. \end{aligned}$$

We see that if \(0<\sigma <2\), then

$$\begin{aligned} \lim _{\lambda \rightarrow 0} f(\lambda )= 0. \end{aligned}$$

Moreover,

$$\begin{aligned} f'(\lambda ) =- \frac{1}{\lambda ^2} \int _0^\lambda e^{-ar} r^{2-\sigma } dr <0, \quad \forall \lambda >0. \end{aligned}$$

This shows that f is a strictly decreasing function, hence \(f(\lambda ) <0\) for all \(\lambda >0\). Thus for \(x\ne 0\),

$$\begin{aligned} \int \frac{e^{-a|y|}}{|y|^\sigma |x-y|} dy < 4\pi a^{2-\sigma } \Gamma (2-\sigma ). \end{aligned}$$

We conclude that

$$\begin{aligned} \Vert V\Vert _{\mathcal {K}} = 4\pi |c| a^{2-\sigma } \Gamma (2-\sigma ) \end{aligned}$$

which proves (1.6). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, V.D. Non-radial scattering theory for nonlinear Schrödinger equations with potential. Nonlinear Differ. Equ. Appl. 28, 61 (2021). https://doi.org/10.1007/s00030-021-00722-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-021-00722-7

Keywords

Mathematics Subject Classification

Navigation