Skip to main content
Log in

Scattering above energy norm of a focusing size-dependent log energy-supercritical Schrödinger equation with radial data below ground state

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

Given \(n \in \{ 3,4,5 \}\) and \(k > 1\) (resp. \( \frac{4}{3}> k > 1\)) if \(n \in \{ 3,4 \}\) (resp. \(n=5\)), we prove scattering of the radial \({\tilde{H}}^{k} := {\dot{H}}^{k} ({\mathbb {R}}^{n}) \cap {\dot{H}}^{1} ({\mathbb {R}}^{n})-\) solutions of the focusing log energy-supercritical Schrödinger equation \( i \partial _{t} u + \triangle u = -|u|^{\frac{4}{n-2}} u \log ^{\gamma } ( 2 + |u|^{2})\) for a range of positive \(\gamma \, s\) depending on the size of the initial data, for critical energies below the ground states’, and for critical potential energies below. In order to control the barely supercritical nonlinearity in the virial identity and in the estimate of the growth of the critical energy for nonsmooth solutions, i.e solutions with data in \({\tilde{H}}^{k}\), \(k \le \frac{n}{2}\), we prove some Jensen-type inequalities, in the spirit of Roy (Int Math Res Not 2020(8):2501–2541, 2020).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. It is well known that the minus sign in the nonlinear term of (1) makes the equation “focusing”.

  2. To simplify the exposition, we have chosen in this paper to work with \(g(|u|):= \log ^{\gamma } (2 + |u|^{2})\). The reader can check that the main result (i.e., Theorem 3) also holds for all functions g of the form \(g(|u|) := \log ^{\gamma } ( b + |u|^{2}) \) with \(b > 1\). See also Remark 8.

  3. Strictly speaking, the result in [8] is stated for critical energies (resp. kinetic energies) below the critical energy (resp. the critical kinetic energy) of the ground states. A simple argument shows that the conditions are the same if the word “kinetic” is replaced with “potential”: see “Appendix A”. For a definition of the critical energy, the critical kinetic energy, and the critical potential energy, we refer to (10).

  4. Proposition 1 was proved in [14] for \(n\in \{3, 4\}\) and \(k > \frac{n}{2}\). Nevertheless it is stated slightly differently: “\(\mathcal {B}\left( L_t^{\frac{2(n+2)}{n-2}} L_x^{\frac{2(n+2)}{n-2}} ([0, T_l]); 2\epsilon \right) \)” is replaced with “\(L_t^{\frac{2(n+2)}{n-2}} L_x^{\frac{2(n+2)}{n-2}} ([0, T_l])\)” in (7). It is not difficult to see that Proposition 1 implies that (8) also holds if we take into account this modification.

  5. Here \(1_{2}^{*}\) is the critical Sobolev exponent, i.e., it satisfies \(\frac{1}{1_{2}^{*}} = \frac{1}{2} - \frac{1}{n}\). It is well known that if u is a solution of (3) with data in \({\dot{H}}^{1}\), then \(E_{\mathrm{cr}}(u(t))\) is conserved in time, that is \(E_{\mathrm{cr}}(u(t)) = E_{\mathrm{cr}}(u(0))\). Hence, the terminology “critical”.

  6. Observe that \(\gamma \) satisfies condition (12). This condition depends on the size of the data. Hence, the terminology “size-dependent”.

  7. For a definition of the \(\ll \) symbol and the \(\gtrsim \) symbol, we refer to Sect. 2.

  8. Indeed this follows from (11) and (28).

  9. The smallness depends on the value of \(\Vert u_{0} \Vert _{{\tilde{H}}^{k}}\) and on the value of \(\delta \).

  10. For a definition of Q(Ju) and \({\tilde{h}}\), we refer to Sect. 2 and to Sect. 4.

  11. Indeed, taking into account \(g(|f|) \lesssim 1 + |f|^{k_{2}^{*}-1_{2}^{*}}\), the embeddings \({\tilde{H}}^{k} \hookrightarrow L^{1_{2}^{*}}\) and \({\tilde{H}}^{k} \hookrightarrow L^{k_{2}^{*}}\), we get \(\left| \int _{{\mathbb {R}}^{n}} P(|f|)(x) \, \mathrm{d}x \right| \lesssim \Vert f \Vert ^{1_{2}^{*}}_{{\tilde{H}}^{k}} + \Vert f \Vert ^{k_{2}^{*}}_{{\tilde{H}}^{k}} < \infty \cdot \)

  12. More precisely, if \(n \in \{ 3,4 \}\), then a computation shows that \(E_{\gamma }(u(t))= E_{\gamma }(u(0))\) for smooth solutions (i.e., solutions in \({\tilde{H}}^{p}\) with exponents p large enough). Then \(E_{\gamma }(u(t)) = E_{\gamma }(u(0))\) holds for an \({\tilde{H}}^{k}-\) solution by a standard approximation with smooth solutions. If \(n=5\), then the nonlinearity is not even smooth. So one should first smooth out the nonlinearity and obtain an identity similar to the energy identity for smooth solutions (i.e., solutions lying in Sobolev spaces with large exponent.) of the “smoothed” equation and then take limit in \({\tilde{H}}^{k}\) by a standard approximation with smooth solutions.

  13. Divide into three cases: \( \frac{n+2}{n-2}> k^{'} > \frac{n}{2} \) if \( n \in \{ 3,4 \} \), \( \frac{n}{2} \ge k^{'} > 1 \) if \(n \in \{3,4 \}\), and \( \frac{4}{3}> k^{'} > 1 \) if \(n= 5\).

  14. i.e., if \(t \rightarrow u(t,x)\) is a solution of (1), then \( t \rightarrow {\bar{u}}(-t,x) \) is a solution of (1).

  15. The number \(|k_{\diamond }|_{2}^{*} \) is such that \(\frac{1}{|k_{\diamond }|_{2}^{*}} = \frac{1}{2} - \frac{|k_{\diamond }|}{n} = \frac{1}{2} - \frac{k_{\diamond }}{n}\). Here, we consider \(|k_{\diamond }|_{2}^{*} \) instead of \(k_{\diamond _{2}}^{*}\) since the notation \(k_{\diamond _{2}}^{*}\) might be confusing.

  16. We explain why we introduced \({\tilde{g}}\) and \({\tilde{h}}\). Observe that g and h are not concave on the whole interval \((0,\infty )\), as opposed to \({\tilde{g}}\) and \({\tilde{h}}\). So it is easier to apply the Jensen inequality to \({\tilde{g}}\) and \({\tilde{h}}\) than to g and h.

  17. This is at this stage that we have to assume that \(\eta _{2} \ll \eta _{1}\): see [17].

  18. We define \(\langle f,g \rangle := \Re \left( \int _{{\mathbb {R}}^{n}} f(x) {\bar{g}}(x) \; \mathrm{d}x \right) \).

  19. Assume first that \(n \in \{ 3,4 \}\). The above argument shows that (46) holds for smooth solutions (i.e., \({\tilde{H}}^{p}-\) solutions with p large enough); in order to prove (46) for \({\tilde{H}}^{k}-\) solutions, \(k \in I_{n}\), one uses a standard approximation argument of \({\tilde{H}}^{k}-\) solutions with smooth solutions. If \(n=5\), then proceed similarly as in Footnote 12 to obtain a identity similar to (46) for smooth solutions of the “smoothed” equation; then, one should take limit in \({\tilde{H}}^{k}\) by a standard approximation with smooth solutions.

  20. Notation: \(\sum \limits _{k^{'}=k+N}^{K} a_{k^{'}}=0\), if \(k^{'}> K\)

  21. Observe that this extra assumption does not invalidate the use of Proposition 7 in [14] since Proposition 7 is only applied in this paper to nondecreasing functions of the form \({\tilde{F}}(x) := \log ^{c} \log \left( 10 + x \right) \).

  22. It is well known (see, e.g., [11] and references therein) that if \( \left| H^{'} \left( \tau x + (1- \tau ) y \right) \right| \lesssim {\tilde{H}}(x) + {\tilde{H}}(y) \) holds for some well-chosen \({\tilde{H}}\), then the fractional Leibnitz-type composition rule \(\left\| D^{\alpha '} H(f) \right\| _{L^{q}} \lesssim \)\(\left\| {\tilde{H}}(f) \right\| _{L^{q_{1}}} \left\| D^{\alpha '} f \right\| _{L^{q_{2}}}\) holds for \((\alpha ',q ,q_{1},q_{2})\) such that \( 1> \alpha ' > 0 \), \( (q,q_{2}) \in (1, \infty )^{2} \), \( q_{1} \in ( 1, \infty ],\) and \(\frac{1}{q} = \frac{1}{q_{1}} + \frac{1}{q_{2}} \). In the proof of Proposition 7 of [14], we need to apply this rule to control norms of the type \( \left\| D^{\alpha '} \left( \partial _{z} G(f,{\bar{f}}) F(|f|^{2}) \right) \right\| _{L^{q}}\). The nondecreasing property of \({\tilde{F}}\) shows that \( \tau \in [0,1]: \; \left| \left( \partial _{z} G \, F \left( | \cdot |^{2} \right) \right) ^{'} \left( \tau x + (1- \tau )y \right) \right| \lesssim {\tilde{H}}(x) + {\tilde{H}}(y) \), with \({\tilde{H}}(x) := |x|^{\beta - 1} {\tilde{F}} (|x|^{2})\).

References

  1. T. Aubin, Equations differentielles nonlineaires et probleme de Yamabe concernant la courbure scalaire, J. Math. Pures. Appl. (9), 55, 1976, 3, 269–296.

    MathSciNet  MATH  Google Scholar 

  2. J. Bourgain, Global well-posedness of defocusing critical NLS in the radial case, JAMS 12 (1999), no. 1, 145–171.

    MATH  Google Scholar 

  3. T. Cazenave, F.B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in\({\cal{H}}^{s}\), Nonlinear Anal. 14 (1990), no. 10, 807–836.

    Article  MathSciNet  Google Scholar 

  4. J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global well-posedness and scattering in the energy space for the critical nonlinear Schrödinger equation in\({\mathbb{R}}^{3}\), Annals of Math. 167 (2008), 767–865.

    Article  MathSciNet  Google Scholar 

  5. T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal. 18 (2009), no. 6, 1787–1840.

    Article  MathSciNet  Google Scholar 

  6. S. Hsi-Wei, Some results on scattering for log-subcritical and log-supercritical nonlinear wave equations, Anal. PDE 6 (2013), no. 1, 1–24.

    Article  MathSciNet  Google Scholar 

  7. M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. Math. J. 120 (1998), 955–980.

    Article  MathSciNet  Google Scholar 

  8. C. E. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), no. 3, 645–675.

    Article  MathSciNet  Google Scholar 

  9. K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation, J. Diff. Eq. 250 (2011), 2299–2333.

    Article  MathSciNet  Google Scholar 

  10. K. Nakanishi and T. Roy, Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data, Communications on Pure and Applied Analysis, Volume 15, Issue 6, November 2016, 2023–2058.

    Article  MathSciNet  Google Scholar 

  11. M. Taylor, Tools for PDE. Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Mathematical Surveys and Monographs 81, AMS, Providence, R.I. 2000.

    MATH  Google Scholar 

  12. J. Yeh, Real analysis, Theory of measure and integration, World Scientific, 2014 (3rd edition).

  13. G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl.,(4) 1976, 353-372.

  14. T. Roy, Scattering above energy norm of solutions of a loglog energy-supercritical Schrödinger equation with radial data, Journal of Differential Equations, 250 (2011), no. 1, 292–319. Corrigendum, 264 (2018), no. 9, 6013–6024.

  15. T. Roy, On Jensen-type inequalities for nonsmooth radial scattering solutions of a loglog energy-supercritical Schrödinger equation, International Mathematics Research Notices, Volume 2020, Issue 8, April 2020, 2501–2541.

    Article  Google Scholar 

  16. T. Roy, Global existence of smooth solutions to a\(3D\)loglog energy-supercritical wave equation, Analysis and PDE, Vol 2, Num 3, 261–280, 2009.

  17. T. Tao, Global well-posedness and scattering for the higher-dimensional energy-critical non-linear Schrödinger equation for radial data, New York J. Math., 11, 2005, 57–80.

    MathSciNet  MATH  Google Scholar 

  18. T. Tao, The Kenig-Merle scattering result for the energy-critical focusing NLS , unpublished note.

  19. T. Tao, Global regularity for a logarithmically supercritical defocusing nonlinear wave equation for spherically symmetric data, J. Hyperbolic Differ. Equ. 4 (2007), no. 2, 259–265.

    Article  MathSciNet  Google Scholar 

Download references

Funding

This article was partially funded by an URB grant (ID: 3245) from the American University of Beirut. This research was also partially conducted in Japan and funded by a (JSPS) Kakenhi grant [15K17570 to T.R.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendixes

Appendixes

1.1 Appendix A: Equivalence of assumptions in [8]

Let \(\delta > 0\). We denote by \(Ass \; 0\), \(Ass \; 1\), and \(Ass \; 2\) the following assumptions

$$\begin{aligned} \begin{array}{ll} Ass \; 0: &{} E_{\mathrm{cr}}(u_{0})< (1- \delta ) E_{\mathrm{cr}}(W) \\ Ass \; 1: &{} \Vert \nabla u_{0} \Vert _{L^{2}}< \Vert \nabla W \Vert _{L^{2}} \\ Ass \; 2: &{} \Vert u_{0} \Vert _{L^{1_{2}^{*}}} < \Vert W \Vert _{L^{1_{2}^{*}}} \end{array} \end{aligned}$$

It was proved in [8] that if \(Ass \; 0\) and \(Ass \; 1\) hold, then u exists for all time and scatters as \( t \rightarrow \pm \infty \).

Observe that \( Ass \; 0\) and \( Ass \; 1 \) hold if and only if \( Ass \; 0 \) and \( Ass \; 2\) hold. Indeed assume that \( Ass \; 0\) and \( Ass \; 1\) hold. Then, the sharp Sobolev inequality (see Remark 7) and (28) yield \( K_{\mathrm{cr}}(u_{0}) \ge \Vert \nabla u_{0} \Vert ^{2}_{L^{2}} - \frac{1}{\Vert \nabla W \Vert ^{1_{2}^{*} -2}_{L^{2}}} \Vert \nabla u_{0} \Vert ^{1_{2}^{*}}_{L^{2}} \) with \( K_{\mathrm{cr}}(f)\) defined in (27). Hence, elementary considerations show that \( K_{\mathrm{cr}}(u_{0}) \ge 0\). Hence, from \( E_{\mathrm{cr}}(u_{0}) = \left( \frac{1}{2} - \frac{1}{1_{2}^{*}} \right) \Vert u_{0} \Vert ^{1_{2}^{*}}_{L^{1_{2}^{*}}} + \frac{1}{2} K_{\mathrm{cr}}(u_{0})\) and (28) we see that \( Ass \; 2 \) holds. Conversely if \( Ass \; 0 \) and \( Ass \; 2 \) hold, then it is clear that \( Ass \; 0 \) and \( Ass \; 1 \) hold.

Hence, if \(Ass \; 0\) and \(Ass \; 2\) hold then u exists for all time and scatters as \( t \rightarrow \pm \infty \).

1.2 Appendix B: Scattering for small data

Let \(J \subset {\mathbb {R}}\) be an interval containing 0 and such that \(J \subsetneqq I_{\max } \). Observe from the embedding \( \Vert f \Vert _{L^{\frac{2(n+2)}{n-2}}} \lesssim \Vert D f \Vert _{L^{\frac{2n(n+2)}{n+4}}} \) and the interpolation of \(\Vert D u \Vert _{L_{t}^{\frac{2n(n+2)}{n^{2}+4}} L_{x}^{\frac{2n(n+2)}{n^{2}+4}} (J)} \) between \( \Vert D u \Vert _{L_{t}^{\infty } L_{x}^{2}(J)} \) and \( \Vert D u \Vert _{L_{t}^{\frac{2(n+2)}{n}} L_{x}^{\frac{2(n+2)}{n}} (J)} \) that \(\Vert u \Vert _{L_{t}^{\frac{2(n+2)}{n-2}} L_{x}^{\frac{2(n+2)}{n-2}} (J)} \lesssim Q(J,u)\). (16), (22), and Proposition 8 allow to show that if \( \Vert u_0 \Vert _{{\tilde{H}}^{k}} \ll 1\), then the solution u constructed by Proposition 1 satisfies the conclusions of Theorem  3. More precisely, there exists a positive constant C such that

$$\begin{aligned} \begin{array}{ll} Q(J,u) &{} \lesssim \Vert u_0 \Vert _{{\tilde{H}}^{k}} + \Vert D( |u|^{\frac{4}{n-2}} u g(|u|) ) \Vert _{L_{t}^{\frac{2(n+2)}{n+4}} L_{x}^{\frac{2(n+2)}{n+4}}(J)}\\ &{}\quad +\, \Vert D^{k}( |u|^{\frac{4}{n-2}} u g(|u|) ) \Vert _{L_{t}^{\frac{2(n+2)}{n+4}} L_{x}^{\frac{2(n+2)}{n+4}} (J)} \\ &{} \lesssim \Vert u_0 \Vert _{{\tilde{H}}^{k}} + \langle Q(J,u) \rangle ^{C} \Vert u \Vert ^{\frac{4}{n-2}-}_{L_{t}^{\frac{2(n+2)}{n-2}} L_{x}^{\frac{2(n+2)}{n-2}}(J)} \\ &{} \lesssim \Vert u_0 \Vert _{{\tilde{H}}^{k}} + \langle Q(J,u) \rangle ^{C} Q^{\frac{4}{n-2}-}(J,u) \cdot \end{array} \end{aligned}$$

A continuity argument applied to the estimate above shows that \(I_{\max } = {\mathbb {R}}\) and that \(Q ({\mathbb {R}},u) \lesssim \Vert u_{0} \Vert _{{\tilde{H}}^{k}} < \infty \).

Let \(1 \gg \epsilon > 0 \). There exists \(A(\epsilon )\) large enough such that if \(t_2 \ge t_1 \ge A(\epsilon )\) then \(\Vert u \Vert _{L_{t}^{\frac{2(n+2)}{n-2}} L_{x}^{\frac{2(n+2)}{n-2}} ([t_1,t_2])} \ll \epsilon \). Hence, \(\left\| e^{-it_{1} \triangle } u(t_1) - e^{-i t_{2} \triangle } u(t_2) \right\| _{{\tilde{H}}^{k}} \ll \epsilon \) by a similar estimate to (26). Hence, (13) holds.

1.3 Appendix C: Comments on paper [14]

1.3.1 Proposition 7 in [14]

The proposition stated below is a slight modification of Proposition 7 in [14]:

Proposition 11

Let \( 0 \le \alpha < 1\), \(k'\) and \(\beta \) be integers such that \(k' \ge 2\) and \(\beta > k'-1 \), \((r ,r_{2}) \in (1,\infty )^{2}\), \((r_{1},r_{3}) \in (1, \infty ]^{2}\) be such that \(\frac{1}{r}= \frac{\beta }{r_{1}} + \frac{1}{r_{2}} +\frac{1}{r_{3}}\). Let \(F: {\mathbb {R}}^{+} \rightarrow {\mathbb {R}}\) be a \({\mathcal {C}}^{k'}-\) function, let \({\tilde{F}}: {\mathbb {R}}^{+} \rightarrow {\mathbb {R}}\) be a nondecreasing function, and let \( G := {\mathbb {R}}^{2} \rightarrow {\mathbb {R}}^{2} \) be a \({\mathcal {C}}^{k^{'}}- \) function such that

$$\begin{aligned} \begin{array}{l} (a): \; \left\{ \begin{array}{l} \tau \in [0,1]: \; \left| {\tilde{F}} \left( |\tau x + (1-\tau )y|^{2} \right) \right| \lesssim \left| {\tilde{F}}(|x|^{2}) \right| + \left| {\tilde{F}}( |y|^{2}) \right| , \, \text {and} \\ i \in \{0,\ldots ,k^{'} \}: \; F^{[i]}(x) = O \left( \frac{{\tilde{F}}(x)}{x^{i}} \right) \end{array} \right. \\ (b): \; i \in \{0,\ldots ,k^{'} \}: \; G^{[i]}(x,{\bar{x}}) = O \left( |x|^{\beta + 1 - i} \right) \cdot \end{array} \end{aligned}$$

Then

$$\begin{aligned} \begin{array}{ll} \left\| D^{ k' -1 + \alpha } \left( G(f,{\bar{f}}) F(|f|^{2}) \right) \right\| _{L^{r}}&\lesssim \Vert f \Vert ^{\beta }_{L^{r_{1}}} \Vert D^{k' -1 + \alpha } f \Vert _{L^{r_{2}}} \Vert {\tilde{F}}(|f|^{2}) \Vert _{L^{r_{3}}} \end{array} \end{aligned}$$
(57)

Here \(F^{[i]}\) and \(G^{[i]}\) denote the \(i\mathrm{th}\)-derivative of F and G, respectively.

Remark 10

We mention the differences between the statement of the proposition above and that of Proposition 7 in [14]:

  • the \({\mathcal {C}}^{k}-\) regularity assumption of \({\tilde{F}}\) present in the statement of Proposition 7 in [14] has been removed from that of the proposition above. Indeed, while reading the proof of Proposition 7 in [14] we have observed that this assumption is not necessary to prove (57).

  • one has added an extra assumption, namely the nondecreasing property of \({\tilde{F}}\). Indeed, recall that we prove Proposition 7 in [14] first in the particular case where \({\tilde{F}} := F\) and then in the general case. While reading the proof of Proposition 7 in [14] we have observed that this extra assumptionFootnote 21 is necessary to apply some Leibnitz-type rulesFootnote 22 and to prove (57).

Hence, taking into account the above remark, the proposition above was proved in [14]. Hence Proposition 7 holds for \(\beta > k^{'}-1\). It remains to prove Proposition 7 for \(\beta = k^{'} - 1 \).

1.3.2 Proposition 7 in [14] and technical error in [14]

In this paragraph, we point out a technical error in [14]. We then explain how to fix the error. Recall that in order to apply use Proposition 7 in [14], we need to assume that \( \beta > k' - 1 \). In [14], we combine for \( n \in \{ 3,4 \} \) this proposition (with \( \beta := \frac{4}{n-2} \), \(G(f, {\bar{f}}):= |f|^{\frac{4}{n-2}} f\), and \({\tilde{F}}(x) := F(x) := \log ^{c} \left( \log (10 + x) \right) \)) with (16) to control norms at \({\dot{H}}^{k}-\) regularity of the nonlinearity on small intervals J for \( \frac{n}{2}< k < \frac{n+2}{n-2}\): for example we use estimates in [14] such as \( \left\| D^{k} \left( |u|^{\frac{4}{n-2}} u F(|u|^{2}) \right) \right\| _{L_{t}^{\frac{2(n+2)}{n+4}} L_{x}^{\frac{2(n+2)}{n+4}} (J) } \lesssim \Vert u \Vert ^{\frac{4}{n-2}}_{L_{t}^{\frac{2(n+2)}{n-2}} L_{x}^{\frac{2(n+2)}{n-2}} (J)} \Vert F(|u|^{2}) \Vert _{L_{t}^{\infty } L_{x}^{\infty } (J) } \cdot \) While writing this paper we have observed that for \(n=3\) the constraint \(\beta > k' - 1\) imposes that \(k' \le 4\). Hence, in order to use (57) one must assume that \( k< 4 - 1 + (1-) < 4 \), which does not cover the full range \( \frac{n}{2}< k < \frac{n+2}{n-2}\). We can fix this error by using Proposition 7 of this paper in Sect. 2: indeed the less restrictive constraint \(\beta \ge k' - 1 \) allows for \(n \in \{ 3,4 \}\) to use (21) for \( \frac{n}{2}< k < \frac{n+2}{n-2} \).

1.4 Appendix D: Proof of Proposition 7 for \(\beta = k'-1\)

1.4.1 A fractional Leibnitz-type rule

We write below a composition rule:

Proposition 12

Let \( 0< \alpha < 1 \) and let \(H \in {\mathcal {C}} \left( {\mathbb {R}}^{2} \right) \cap {\mathcal {C}}^{1} \left( {\mathbb {R}}^{2} - \{ (0,0) \} \right) \) that satisfies the following condition: for all \((x,y,\tau ) \in {\mathbb {R}}^{2} \times [0,1] \) such that \( \tau x + (1- \tau ) y \ne 0 \), \( \left| H^{'} \left( \tau x + (1- \tau ) y \right) \right| \lesssim {\tilde{H}}(x) + {\tilde{H}}(y)\) for some \({\tilde{H}}: {\mathbb {R}}^{2} \rightarrow {\mathbb {R}}\) that is continuous at the origin O and such that \( {\tilde{H}}(O) \lesssim {\tilde{H}}(z)\) for all \(z \in {\mathbb {R}}^{2}\). Then,

$$\begin{aligned} \begin{array}{ll} \left\| D^{\alpha } H(f) \right\| _{L^{q}}&\lesssim \Vert {\tilde{H}}(f) \Vert _{L^{q_{1}}} \Vert D^{\alpha } f \Vert _{L^{q_{2}}} \end{array} \end{aligned}$$
(58)

if \((q,q_{2}) \in (1,\infty )^{2}\), \(q_{1} \in ( 1 , \infty ] \), and \( \frac{1}{q}= \frac{1}{q_{1}} + \frac{1}{q_{2}}\).

Remark 11

In (58) and in the proof of Proposition 12 we abuse notation: we write f, f(x), and f(y) for \((f,{\bar{f}})\), \(\left( f(x), \overline{f(x)} \right) \), and \(\left( f(y), \overline{f(y)} \right) \), respectively.

Proof

Assume that \( (*): \left| H \left( f(y) \right) - H(f(x)) \right| \lesssim \left( {\tilde{H}}(f(x)) + {\tilde{H}}(f(y)) \right) \left| f(y) - f(x) \right| \) holds for all \((x,y) \in {\mathbb {R}}^{2} \times {\mathbb {R}}^{2} \). Then, rewriting the proof of Proposition 5.1, Chapter 2 of [11] we see that (58) holds. So it remains to prove \((*)\). To this end, we consider the line segment [f(x), f(y)]. If \(O \notin [f(x),f(y)]\) then this follows from the fundamental theorem of calculus. Assume now that \(O \in [f(x),f(y)]\). Let \( \min \left( |f(x)|, |f(y)| \right)> \epsilon > 0 \). Choose two points \( ( z_{1}, z_{2} ) \in [f(x),f(y)] \) such that \( |z_{1}| \le \epsilon \) and \(z_{2}\) symmetric of \(z_{1}\) with respect to O such that for \( Q \in \{ H, {\tilde{H}} \} \), \( \left| Q(z_{1}) - Q(z_{2}) \right| \le \epsilon \). Swapping \(z_{1}\) with \(z_{2}\) if necessary, we see that \(|f(x) - f(y)| = |f(x) - z_{2}| + |z_{2} - z_{1}| + |z_{1} - f(y)|\) and that (**) holds with

$$\begin{aligned} (**): \begin{array}{ll} \left| H \left( f(y) \right) - H ( z_{1} ) \right| &{} \lesssim \left( {\tilde{H}}(f(y)) + {\tilde{H}}(z_{1}) \right) | f(y) - z_{1}|, \; \text {and} \\ \left| H \left( f(x) \right) - H ( z_{2} ) \right| &{} \lesssim \left( {\tilde{H}}(f(x)) + {\tilde{H}}(z_{2}) \right) | f(x) - z_{2}| \cdot \end{array} \end{aligned}$$

By the triangle inequality and by letting \(\epsilon \rightarrow 0 \), we see that \((*)\) holds. Assume now that \(f(x)=O\) and that \(f(y) \ne O.\) Let \(|f(y)|> \epsilon >0\) we choose one point \(z_1\in [O,f(y)]\) such that \(|z_1|\ge \epsilon .\) Hence the first inequality of (**) holds. By letting \(\epsilon \rightarrow \) 0 we see that (*) holds. A similar proof shows that (*) also holds if \(f(x) \ne \) O and \(f(y)=O\). \(\square \)

We then recall a product rule (see [11] and references therein). Let \( \alpha ' \ge 0\). Then

$$\begin{aligned} \begin{array}{ll} \left\| D^{\alpha '} (fg) \right\| _{L^{q}}&\lesssim \Vert D^{\alpha '} f \Vert _{L^{q_{1}}} \Vert g \Vert _{L^{q_{2}}} + \Vert f \Vert _{L^{q_{3}}} \Vert D^{\alpha '} g \Vert _{L^{q_{4}}} \end{array} \end{aligned}$$

if \( (q,q_{1},q_{4}) \in (1,\infty )^{3} \) and \((q_{2},q_{3}) \in (1,\infty ]^{2}\) .

1.4.2 Proof.

We slightly modify an argument in [14].

Let \(k^{'} = 2\). Then (see [14]) \( \left\| D^{2-1 + \alpha } \left( G(f,{\bar{f}}) F(|f|^{2}) \right) \right\| _{L^{r}} \lesssim A_{1} + A_{2} + A_{3} \) with \( A_{1} := \left\| D^{\alpha } \left( \partial _{z} G(f,{\bar{f}}) \nabla f F(|f|^{2}) \right) \right\| _{L^{r}} \), \( A_{2} := \left\| D^{\alpha } \left( \partial _{{\bar{z}}} G(f,{\bar{f}}) \overline{\nabla f} F(|f|^{2} \right) ) \right\| _{L^{r}} \), and \(A_{3} := \left\| D^{\alpha } \left( F^{'}(|f|^{2}) \Re \left( {\bar{f}} \nabla f \right) G(f,{\bar{f}}) \right) \right\| _{L^{r}} \).

Let \( H (x) : = \partial _{z} G(x,{\bar{x}}) F(|x|^{2}) \) and \( {\tilde{H}}(x) := \left| {\tilde{F}} \left( |x|^{2} \right) \right| \). Then \( \left| H^{'}(\tau x + (1- \tau ) y ) \right| \lesssim {\tilde{H}}(x) + {\tilde{H}}(y) \). The composition rule and the product rule show that

$$\begin{aligned} A_{1}\lesssim & {} \left\| D^{\alpha } \left( \partial _{z} G(f,{\bar{f}}) F(|f|^{2}) \right) \right\| _{L^{r_{4}}} \Vert D f \Vert _{L^{r_{5}}} \\&+ \left\| \partial _{z} G(f,{\bar{f}}) F(|f|^{2}) \right\| _{L^{r_{6}}} \left\| D^{(2-1) + \alpha } f \right\| _{L^{r_{2}}} \\\lesssim & {} \left\| {\tilde{F}}(|f|^{2}) \right\| _{L^{r_{3}}} \left\| D^{\alpha } f \right\| _{L^{r_{8}}} \left\| D f \right\| _{L^{r_{5}}} + \Vert f \Vert _{L^{r_{1}}} \left\| D^{(2-1) + \alpha } f \right\| _{L^{r_{2}}} \left\| {\tilde{F}}(|f|^{2}) \right\| _{L^{r_{3}}} \cdot \end{aligned}$$

Here \(\frac{1}{r} = \frac{1}{r_{4}} + \frac{1}{r_{5}} \), \( \frac{1}{r} = \frac{1}{r_{6}} + \frac{1}{r_{2}}\), \(\frac{1}{r_{4}} =\frac{1}{r_{3}} + \frac{1}{r_{8}} \), \(\frac{1}{r_{5}} = \frac{1 - \theta _{1}}{r_{1}} + \frac{\theta _{1}}{r_{2}}\), and \(\theta _{1} = \frac{1}{1+ \alpha } \). Notice that these relations imply that \(\frac{1}{r_{8}} = \frac{\theta _{1}}{r_{1}} + \frac{1 - \theta _{1}}{r_{2}}\). Hence

$$\begin{aligned} \begin{array}{l} \Vert D^{\alpha } f \Vert _{L^{r_{8}}} \lesssim \Vert f \Vert ^{\theta _{1}}_{L^{r_{1}}} \Vert D^{(2-1) + \alpha } f \Vert ^{1- \theta _{1}}_{L^{r_{2}}}, \; \text {and} \\ \Vert D f \Vert _{L^{r_{5}}} \lesssim \Vert f \Vert ^{1 - \theta _{1}}_{L^{r_{1}}} \Vert D^{(2-1) + \alpha } f \Vert ^{\theta _{1}}_{L^{r_{2}}} \cdot \end{array} \end{aligned}$$

Hence, \(A_{1} \lesssim \text {R.H.S of}\) (21). Similarly, \(A_{2} \lesssim \text {R.H.S of}\) (21) . We also have

$$\begin{aligned} A_{3}&\lesssim \sum \limits _{{\tilde{f}} \in \{ f ,{\bar{f}}\}} \left\| D^{\alpha } \left( F^{'} (|f|^{2}) {\tilde{f}} G(f, {\bar{f}}) \right) \right\| _{L^{r_{4}}} \Vert D f \Vert _{L^{r_{5}}} \\&\quad + \sum \limits _{{\tilde{f}} \in \{ f ,{\bar{f}}\}} \Vert D^{(2-1) + \alpha } f \Vert _{L^{r_{2}}} \Vert F^{'}(|f|^{2}) {\tilde{f}} G(f,{\bar{f}}) \Vert _{L^{r_{6}}} \\&\lesssim A_{3,1} + A_{3,2} \end{aligned}$$

We have \(A_{3,2} \lesssim \text {R.H.S of}\) (21). The composition rule shows that \(A_{3,1} \lesssim \text {R.H.S of}\) (21).

Assume that Proposition 7 holds for \(k'\). Let us prove that Proposition 7 also holds for \(k' + 1\). Following [14], we have \( \left\| D^{k^{'} + \alpha } \left( G(f,{\bar{f}}) F(|f|^{2}) \right) \right\| _{L^{r}} \lesssim A^{'}_{1} + A^{'}_{2} + A^{'}_{3} \) with \( A^{'}_{1} := \left\| D^{k^{'} - 1 + \alpha } \left( \partial _{z} G(f,{\bar{f}}) \nabla f F(|f|^{2}) \right) \right\| _{L^{r}} \), \( A^{'}_{2} := \left\| D^{k^{'} -1 + \alpha } \left( \partial _{{\bar{z}}} G(f,{\bar{f}}) \overline{\nabla f} F(|f|^{2}) \right) \right\| _{L^{r}} \), and \(A^{'}_{3} := \left\| D^{k^{'} - 1 + \alpha } \left( \Re ( {\bar{f}} \nabla f ) G(f,{\bar{f}}) \right) \right\| _{L^{r}} \). We estimate \(A^{'}_{3}\). Applying the induction assumption to the functions \({\check{F}}(x) := x F^{'}(x)\), \( G_{1} (x, {\bar{x}}) := \frac{G(x,{\bar{x}})}{x} \), \( G_{2} (x, {\bar{x}}) := \frac{G(x,{\bar{x}})}{x},\) and F, we see that

$$\begin{aligned} A^{'}_{3}\lesssim & {} \sum \limits _{{\tilde{f}} \in \{f,{\bar{f}}\}} \left\| D^{k^{'}-1 + \alpha } \left[ G(f,{\bar{f}}) F^{'}(|f|^{2}) {\tilde{f}} \right] \right\| _{L^{r^{'}_{4}}} \Vert D f \Vert _{L^{r^{'}_{5}}}\\&+ \Vert D^{k^{'} + \alpha } f \Vert _{L^{r_{2}}} \Vert G(f,{\bar{f}}) F^{'}(|f|^{2}) {\tilde{f}} \Vert _{L^{r_{6}}} \\\lesssim & {} \Vert f \Vert ^{\beta - 1}_{L^{r_{1}}} \Vert D^{k^{'}-1 + \alpha } f \Vert _{L^{r_{8}^{'}}} \Vert {\tilde{F}}(|f|^{2}) \Vert _{L^{r_{3}}} \Vert D f \Vert _{L^{r_{5}^{'}}}\\&+ \Vert D^{k^{'} + \alpha } f \Vert _{L^{r_{2}}} \Vert f \Vert ^{\beta }_{L^{r_{1}}} \Vert {\tilde{F}}(|f|^{2}) \Vert _{L^{r_{3}}} \\\lesssim & {} \Vert f \Vert ^{\beta }_{L^{r_{1}}} \Vert D^{k^{'} + \alpha } f \Vert _{L^{r_{2}}} \Vert {\tilde{F}}(|f|^{2}) \Vert _{L^{r_{3}}}, \end{aligned}$$

where at the last line we used

$$\begin{aligned} \begin{array}{l} \Vert D f \Vert _{L^{r_{5}^{'}}} \lesssim \Vert f \Vert ^{1 - \theta _{1}^{'}}_{L^{r_{1}}} \Vert D^{(k^{'}+1)-1 + \alpha } f \Vert ^{\theta _{1}^{'}}_{L^{r_{2}}}, \; \text {and} \\ \Vert D^{k' -1+ \alpha } f \Vert _{L^{r_{8}^{'}}} \lesssim \Vert f \Vert ^{\theta _{1}^{'}}_{L^{r_{1}}} \Vert D^{(k^{'}+1)-1 + \alpha } f \Vert ^{1 - \theta _{1}^{'}}_{L^{r_{2}}} \cdot \end{array} \end{aligned}$$

Here \(\frac{1}{r_{5}^{'}} = \frac{1- \theta _{1}^{'}}{r_{1}} + \frac{\theta _{1}^{'}}{r_{2}}\) with \(\theta _{1}^{'} = \frac{1}{k^{'} + \alpha }\), \(\frac{1}{r} = \frac{1}{r_{4}^{'}} + \frac{1}{r_{5}^{'}}\), and \(\frac{1}{r_{4}^{'}} = \frac{\beta -1 }{r_{1}} + \frac{1}{r_{8}^{'}} + \frac{1}{r_{3}} \). Observe that these relations imply that \(\frac{1}{r_{8}^{'}} = \frac{\theta _{1}^{'}}{r_{1}} + \frac{1- \theta _{1}^{'}}{r_{2}}\). We also have

$$\begin{aligned} A_{1}^{'}\lesssim & {} \Vert D^{k' + \alpha } f \Vert _{L^{r_{2}}} \Vert \partial _{z} G(f,{\bar{f}}) F(|f|^{2}) \Vert _{L^{r_{6}}}\\&+ \left\| D^{k'-1 + \alpha } \left( \partial _{z} G(f,{\bar{f}}) F(|f|^{2}) \right) \right\| _{L^{r_{4}^{'}}} \Vert D f \Vert _{L^{r_{5}^{'}}} \\\lesssim & {} \Vert f \Vert ^{\beta }_{L^{r_{1}}} \Vert D^{k^{'} + \alpha } f \Vert _{L^{r_{2}}} \Vert {\tilde{F}}(|f|^{2}) \Vert _{L^{r_{3}}} \\&+ \Vert f \Vert ^{\beta -1}_{L^{r_{1}}} \Vert D^{k'-1 + \alpha } f \Vert _{L^{r_{8}^{'}}} \Vert {\tilde{F}}(|f|^{2}) \Vert _{L^{r_{3}}} \Vert D f \Vert _{L^{r_{5}^{'}}} \\\lesssim & {} \Vert f \Vert ^{\beta }_{L^{r_{1}}} \Vert D^{k^{'} + \alpha } f \Vert _{L^{r_{2}}} \Vert {\tilde{F}}(|f|^{2}) \Vert _{L^{r_{3}}} \cdot \end{aligned}$$

Similarly, \( A^{'}_{2} \lesssim \Vert f \Vert ^{\beta }_{L^{r_{1}}} \Vert D^{k^{'} + \alpha } f \Vert _{L^{r_{2}}} \Vert {\tilde{F}}(|f|^{2}) \Vert _{L^{r_{3}}} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, T. Scattering above energy norm of a focusing size-dependent log energy-supercritical Schrödinger equation with radial data below ground state. J. Evol. Equ. 22, 36 (2022). https://doi.org/10.1007/s00028-022-00771-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-022-00771-0

Navigation