Skip to main content
Log in

Braid group symmetries on quasi-split \(\imath \)quantum groups via \(\imath \)Hall algebras

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We establish automorphisms with closed formulas on quasi-split \(\imath \)quantum groups of symmetric Kac-Moody type associated to restricted Weyl groups. The proofs are carried out in the framework of \(\imath \)Hall algebras and reflection functors, thanks to the \(\imath \)Hall algebra realization of \(\imath \)quantum groups in our previous work. Several quantum binomial identities arising along the way are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao, H., Wang, W.: A new approach to Kazhdan-Lusztig theory of type \(B\) via quantum symmetric pairs. Astérisque 402, vii+134pp (2018). arXiv:1310.0103v3

    MathSciNet  MATH  Google Scholar 

  2. Bao, H., Wang, W.: Canonical bases arising from quantum symmetric pairs. Invent. Math. 213, 1099–1177 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baseilhac, P., Kolb, S.: Braid group action and root vectors for the \(q\)-Onsager algebra. Transform. Groups 25, 363–389 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berman, C., Wang, W.: Formulae of \(\imath \)-divided powers in \({{\mathbf{U} }}_q(\mathfrak{sl} _2)\). J. Pure Appl. Algebra 222, 2667–2702 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bridgeland, T.: Quantum groups via Hall algebras of complexes. Ann. Math. 177, 739–759 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chekhov, L.: Teichmüller theory of bordered surfaces. SIGMA Symmet. Integrabil. Geom. Methods Appl. 3, 066, 37 (2007)

    MATH  Google Scholar 

  7. Chen, X., Lu, M., Wang, W.: A Serre presentation for the \(\imath \)quantum groups. Transform. Groups 26, 827–857 (2021). arxiv:1810.12475

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X., Lu, M., Wang, W.: Serre-Lusztig relations for \(\imath \)quantum groups. Commun. Math. Phys. 382, 1015–1059 (2021). arxiv:2001.03818

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, X., Lu, M., Wang, W.: Serre-Lusztig relations for quantum groups III, J. Pure Appl. Algebra (to appear), arxiv:2106.06888

  10. Dlab, V., Ringel, C.M.: Representations of graphs and algebras, Carleton Mathematical Lecture Notes 8, Carleton University, Ottawa, iii+86 pp (1974)

  11. Dobson, L.: Braid group actions for quantum symmetric pairs of type AIII/AIV. J. Algebra 564, 151–198 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Geiss, C., Leclerc, B., Schröer, J.: Quivers with relations for symmetrizable Cartan matrices I: foundations. Invent. Math. 209, 61–158 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gorsky, M.: Semi-derived and derived Hall algebras for stable categories. IMRN 1, 138–159 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Green, J.A.: Hall algebras, hereditary algebras and quantum groups. Invent. Math. 120, 361–377 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kirillov, A.N., Reshetikhin, N.: q-Weyl group and a multiplicative formula for universal R-matrices. Commun. Math. Phys. 134, 421–431 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kolb, S.: Quantum symmetric Kac-Moody pairs. Adv. Math. 267, 395–469 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kolb, S., Pellegrini, J.: Braid group actions on coideal subalgebras of quantized enveloping algebras. J. Algebra 336, 395–416 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Letzter, G.: Symmetric pairs for quantized enveloping algebras. J. Algebra 220, 729–767 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Letzter, G.: Coideal subalgebras and quantum symmetric pairs, New directions in Hopf algebras (Cambridge), MSRI publications, 43, Cambridge Univ. Press, pp. 117–166 (2002)

  20. Levendorskii, S., Soibelman, I.: Some applications of quantum Weyl groups. J. Geom. Phys. 7, 241–254 (1990)

    Article  MathSciNet  Google Scholar 

  21. Li, F.: Modulation and natural valued quiver of an algebra. Pacific J. Math. 256, 105–128 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu, M.: Appendix A to [27], arXiv:1901.11446

  23. Lu, M., Peng, L.: Semi-derived Ringel-Hall algebras and Drinfeld double. Adv. Math. 383, 107668 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lu, M., Wang, W.: Hall algebras and quantum symmetric pairs of Kac-Moody type, arXiv:2006.06904

  25. Lu, M., Wang, W.: A Drinfeld type presentation of affine \(\imath \)quantum groups I: split ADE type. Adv. Math. 393, 108111 (2021). arXiv:2009.04542

    Article  MathSciNet  MATH  Google Scholar 

  26. Lu, M., Wang, W.: Hall algebras and quantum symmetric pairs II: reflection functors. Commun. Math. Phys. 381, 799–855 (2021). arXiv:1904.01621

    Article  MathSciNet  MATH  Google Scholar 

  27. Lu, M., Wang, W.: Hall algebras and quantum symmetric pairs I: foundations. Proc. Lond. Math. Soc. 124(3), 1–82 (2022). arXiv:1901.11446

    Article  MathSciNet  Google Scholar 

  28. Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Amer. Math. Soc. 3, 447–498 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lusztig, G.: Quantum groups at roots of \(1\). Geom. Dedicata 35, 89–114 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lusztig, G.: Introduction to Quantum Groups. Birkhäuser, Boston (1993)

    MATH  Google Scholar 

  31. Lusztig, G.: Hecke algebras with unequal parameters, CRM Monograph Series 18, Amer. Math. Soc., Providence, RI, arXiv:0208154v2 (2003)

  32. Molev, A., Ragoucy, E.: Symmetries and invariants of twisted quantum algebras and associated Poisson algebras. Rev. Math. Phys. 20, 173–198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ringel, C.M.: Hall algebras and quantum groups. Invent. Math. 101, 583–591 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ringel, C.M.: PBW-bases of quantum groups. J. Reine Angrew. Math. 470, 51–88 (1996)

    MathSciNet  MATH  Google Scholar 

  35. Sevenhant, B., Van den Bergh, M.: On the double of the Hall algebra of a quiver. J. Algebra 221, 135–160 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Töen, B.: Derived Hall algebras. Duke Math. J. 135, 587–615 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xiao, J.: Drinfeld double and Ringel-Green theory of Hall algebras. J. Algebra 190, 100–144 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xiao, J., Xu, F.: Hall algebras associated to triangulated categories. Duke Math. J. 143, 357–373 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xiao, J., Yang, S.: BGP-reflection functors and Lusztig’s symmetries: a Ringel-Hall approach to quantum groups. J. Algebra 241, 204–246 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Xinhong Chen for her collaboration in related projects and the joint formulation of the conjectural formulas proved in this paper. ML is partially supported by the National Natural Science Foundation of China (No. 12171333). WW is partially supported by the NSF grant DMS-2001351.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Proposition 5.3

This appendix is devoted to a proof of Proposition 5.3, which concerns about the computation of \([(S'_i)^{\oplus m_1}\oplus (S'_{{{\tau }}i})^{\oplus n_1}]*[S'_j]* [(S'_i)^{\oplus m_2} \oplus (S'_{{{\tau }}i})^{\oplus n_2}]\).

1.1 The setup

By definition, we have

$$\begin{aligned}&[S_i^{\oplus m_1}\oplus S_{{{\tau }}i}^{\oplus n_1}]*[S_{j}]* [S_i^{\oplus m_2} \oplus S_{{{\tau }}i}^{\oplus n_2}] = [S_i^{\oplus m_1}\oplus S_{{{\tau }}i}^{\oplus n_1}]*[S_{j}\oplus S_i^{\oplus m_2} \oplus S_{{{\tau }}i}^{\oplus n_2}]\\&\quad ={\mathbf{v}}^{ c_{ij}m_1+c_{{{\tau }}i,j}n_1 -m_1m_2-n_1n_2 }\sum _{[L]\in {\text {Iso}}({\text {mod}}(\Lambda ^\imath ))}\big |{\text {Ext}}^1_{\Lambda ^\imath }( S_i^{\oplus m_1}\oplus S_{{{\tau }}i}^{\oplus n_1}, S_{j}\oplus S_i^{\oplus m_2} \oplus S_{{{\tau }}i}^{\oplus n_2})_L\big | \cdot [L]. \end{aligned}$$

For any \([L]\in {\text {Iso}}({\text {mod}}(\Lambda ^\imath ))\) such that

$$\begin{aligned} \big |{\text {Ext}}^1_{\Lambda ^\imath }( S_i^{\oplus m_1}\oplus S_{{{\tau }}i}^{\oplus n_1}, S_{j}\oplus S_i^{\oplus m_2} \oplus S_{{{\tau }}i}^{\oplus n_2})_L\big |\ne 0, \end{aligned}$$
(A.1)

there exist a unique \([M]\in {\text {Iso}}({\text {mod}}(kQ))\) and \(d,e\in {{\mathbb {N}}}\) such that \([L]=[M\oplus {{\mathbb {K}}}_i^{\oplus d} \oplus {{\mathbb {K}}}_{{{\tau }}i}^{\oplus e}]\) in \({{{\widetilde{{{\mathcal {H}}}}}({k}Q,{{\tau }})}}\). In this case, M admits the following exact sequence

$$\begin{aligned} 0\longrightarrow S_{j}\oplus S_i^{\oplus (m_2-e)}\oplus S_{{{\tau }}i}^{\oplus (n_2-d)} \longrightarrow M\longrightarrow S_i^{\oplus (m_1-d)} \oplus S_{{{\tau }}i}^{\oplus (n_1-e)} \longrightarrow 0. \end{aligned}$$

Fix \([M]\in {\text {Iso}}({\text {mod}}(kQ))\), \(0\le d\le \min (n_2,m_1)\) and \(0\le e\le \min (n_1,m_2)\). Then there exists a unique indecomposable kQ-module N such that \(M\cong N\oplus S_i^{\oplus t_1^M}\oplus S_{{{\tau }}i}^{\oplus t_3^M}\) for some unique \(t_1^M,t_3^M\). Denote by

$$\begin{aligned}&{{\mathcal {C}}}_M:=\{[\xi ]\in {\text {Ext}}^1_{\Lambda ^\imath }( S_i^{\oplus m_1}\oplus S_{{{\tau }}i}^{\oplus n_1}, S_{j}\oplus S_i^{\oplus m_2} \oplus S_{{{\tau }}i}^{\oplus n_2})_L{|} L\text { admits }\\&\quad \text {a short exact sequence } 0\rightarrow M\rightarrow L\rightarrow {{\mathbb {K}}}_i^{\oplus d}\oplus {{\mathbb {K}}}_{{{\tau }}i}^{\oplus e}\rightarrow 0\}. \end{aligned}$$

In this way, we have

$$\begin{aligned}&[S_i^{\oplus m_1}\oplus S_{{{\tau }}i}^{\oplus n_1}]*[S_{j}]* [S_i^{\oplus m_2} \oplus S_{{{\tau }}i}^{\oplus n_2}]\nonumber \\&\quad =\sum _{e=0}^{\min ( n_1,m_2)}\sum _{d=0}^{\min (n_2,m_1 )}\sum _{[M]\in {\mathcal {I}}'_{m_1+m_2-d-e,n_1+n_2-d-e}} {\mathbf{v}}^{ c_{ij}m_1+c_{{{\tau }}i,j}n_1 -m_1m_2-n_1n_2 } |{{\mathcal {C}}}_M| \cdot [M\oplus {{\mathbb {K}}}_i^{\oplus d}\oplus {{\mathbb {K}}}_{{{\tau }}i}^{\oplus e}]\nonumber \\&\quad =\sum _{e=0}^{\min ( n_1,m_2)}\sum _{d=0}^{\min (n_2,m_1 )}\sum _{[M]\in {\mathcal {I}}'_{m_1+m_2-d-e,n_1+n_2-d-e}} {\mathbf{v}}^{ c_{ij}m_1+c_{{{\tau }}i,j}n_1 -m_1m_2-n_1n_2 +(e-d)(m_1+m_2-n_1-n_2) } |{{\mathcal {C}}}_M| \nonumber \\&\qquad \times [M]*[{{\mathbb {K}}}_i]^{ d}* [{{\mathbb {K}}}_{{{\tau }}i}]^{e}. \end{aligned}$$
(A.2)

1.2 Computation of \( |{{\mathcal {C}}}_M|\)

We shall compute \( |{{\mathcal {C}}}_M|\). Let \(Q'\) and \(Q''\) be the full subquivers of Q formed by the vertices ij and the vertices \({{\tau }}i,j\) respectively. Then we have two restriction functors \({\text {res}}_{ij}:{\text {mod}}(kQ)\rightarrow {\text {mod}}(kQ')\) and \({\text {res}}_{{{\tau }}i,j}: {\text {mod}}(kQ)\rightarrow {\text {mod}}(kQ'')\). Set

$$\begin{aligned} M_1:={\text {res}}_{ij}(M), \quad N_1:={\text {res}}_{ij}(N), \quad M_2:={\text {res}}_{{{\tau }}i,j}(M), \quad N_2:={\text {res}}_{{{\tau }}i,j}(N).\nonumber \\ \end{aligned}$$
(A.3)

Denote by

$$\begin{aligned} {{\mathcal {C}}}_1&:=\{[\xi ]\in {\text {Ext}}^1_{\Lambda ^\imath }( S_i^{\oplus m_1}, S_{j}\oplus S_i^{\oplus m_2} \oplus S_{{{\tau }}i}^{\oplus n_2})_{L_1}{|} L_1\text { admits a short }\\&\quad \text { exact sequence } 0\rightarrow M_1\rightarrow L_1\rightarrow {{\mathbb {K}}}_i^{\oplus d}\oplus S_i^{\oplus e} \oplus S_{{{\tau }}i}^{\oplus (n_2-d)} \rightarrow 0\},\\ {{\mathcal {C}}}_2&:=\{[\xi ]\in {\text {Ext}}^1_{\Lambda ^\imath }( S_{{{\tau }}i}^{\oplus n_1}, S_{j}\oplus S_i^{\oplus m_2} \oplus S_{{{\tau }}i}^{\oplus n_2})_{L_2}{|} L_2\text { admits a short }\\&\quad \text { exact sequence } 0\rightarrow M_2\rightarrow L_2\rightarrow {{\mathbb {K}}}_{{{\tau }}i}^{\oplus e}\oplus S_{{{\tau }}i}^{\oplus d} \oplus S_i^{\oplus (m_2-e)}\rightarrow 0\}. \end{aligned}$$

Lemma A.1

Retain the notations as above. Then \(|{{\mathcal {C}}}_M|=|{{\mathcal {C}}}_1|\cdot |{{\mathcal {C}}}_2|\).

Proof

Applying \({\text {Hom}}_{\Lambda ^\imath }(-,S_{j}\oplus S_i^{\oplus m_2}\oplus S_{{{\tau }}i}^{\oplus n_2})\) to the split short exact sequence

$$\begin{aligned} 0\longrightarrow S_i^{\oplus m_1} \longrightarrow S_i^{\oplus m_1}\oplus S_{{{\tau }}i}^{\oplus n_1}\longrightarrow S_{{{\tau }}i}^{\oplus n_1}\longrightarrow 0, \end{aligned}$$
(A.4)

we have the following short exact sequence

$$\begin{aligned}&0\longrightarrow {\text {Ext}}^1(S_{{{\tau }}i}^{\oplus n_1},S_{j}\oplus S_i^{\oplus m_2}\oplus S_{{{\tau }}i}^{\oplus n_2}){\mathop {\longrightarrow }\limits ^{\beta }} {\text {Ext}}^1( S_i^{\oplus m_1}\oplus S_{{{\tau }}i}^{\oplus n_1},S_{j}\oplus S_i^{\oplus m_2}\oplus S_{{{\tau }}i}^{\oplus n_2})\nonumber \\&\quad {\mathop {\longrightarrow }\limits ^{\alpha }}{\text {Ext}}^1( S_i^{\oplus m_1},S_{j}\oplus S_i^{\oplus m_2}\oplus S_{{{\tau }}i}^{\oplus n_2})\longrightarrow 0. \end{aligned}$$
(A.5)

Then \(\alpha ({{\mathcal {C}}}_M)={{\mathcal {C}}}_1\), and thus, \({{\mathcal {C}}}_M= \bigsqcup _{[\xi ]\in {{\mathcal {C}}}_1} (\alpha |_{{{\mathcal {C}}}_M})^{-1}([\xi ])\).

Since (A.4) is split, we have the following exact sequence

$$\begin{aligned}&0\longrightarrow {\text {Ext}}^1(S_i^{\oplus m_1},S_{j}\oplus S_i^{\oplus m_2}\oplus S_{{{\tau }}i}^{\oplus n_2}){\mathop {\longrightarrow }\limits ^{\delta }} {\text {Ext}}^1( S_i^{\oplus m_1}\oplus S_{{{\tau }}i}^{\oplus n_1},S_{j}\oplus S_i^{\oplus m_2}\oplus S_{{{\tau }}i}^{\oplus n_2})\nonumber \\&\quad {\mathop {\longrightarrow }\limits ^{\gamma }} {\text {Ext}}^1( S_{{{\tau }}i}^{\oplus n_1},S_{j}\oplus S_i^{\oplus m_2}\oplus S_{{{\tau }}i}^{\oplus n_2})\longrightarrow 0 \end{aligned}$$
(A.6)

such that \(\gamma \circ \beta ={\text {Id}}\) and \(\alpha \circ \delta ={\text {Id}}\). For any \([\eta _1],[\eta _2]\in {{\mathcal {C}}}_M\) such that \(\alpha ([\eta _1])=\alpha ([\eta _2])=[\xi ]\), if \(\gamma ([\eta _1])=\gamma ([\eta _2])\), then there exists a unique \([\xi ']\in {\text {Ext}}^1(S_i^{\oplus m_1},S_{j}\oplus S_i^{\oplus m_2}\oplus S_{{{\tau }}i}^{\oplus n_2})\) such that \(\delta ([\xi '])=[\eta _1] -[\eta _2]\). It follows that \([\xi ']=\alpha \circ \delta ([\xi '])= \alpha ([\eta _1])-\alpha ([\eta _2])=[0]\). So \(\delta ([\xi '])=0\) and \([\eta _1]=[\eta _2]\). Therefore, we obtain that \(\gamma |_{(\alpha |_{{{\mathcal {C}}}_M})^{-1} ([\xi ])}\) is injective for any \([\xi ]\in {{\mathcal {C}}}_1\).

By the above calculations,

$$\begin{aligned} {{\mathcal {C}}}_M=\bigsqcup _{[\xi ]\in {{\mathcal {C}}}_1} {{\mathcal {C}}}_\xi , \text { where }{{\mathcal {C}}}_\xi =\gamma (\alpha |_{{{\mathcal {C}}}_M})^{-1} ([\xi ]). \end{aligned}$$
(A.7)

One can show that \({{\mathcal {C}}}_\xi ={{\mathcal {C}}}_2\), which is independent of \([\xi ]\in {{\mathcal {C}}}_1\). Therefore, \(|{{\mathcal {C}}}_M|=|{{\mathcal {C}}}_1|\cdot |{{\mathcal {C}}}_2|\).\(\square \)

1.3 Computation of \( |{{\mathcal {C}}}_1|\) and \( |{{\mathcal {C}}}_2|\)

It remains to compute \( |{{\mathcal {C}}}_1|\) and \( |{{\mathcal {C}}}_2|\).

Lemma A.2

Retain the notations as above. Then

$$\begin{aligned} |{{\mathcal {C}}}_1|=&q^{-c_{ij}d} \big |{\text {Ext}}^1_{kQ}(S_i^{\oplus (m_1-d)}, S_{j})_{N_1\oplus S_i^{\oplus (t_1^M+e-m_2)}}\big |\cdot \big |{\text {Ext}}_{\Lambda ^\imath }^1 (S_i^{\oplus m_1},S_{{{\tau }}i}^{\oplus n_2})_{{{\mathbb {K}}}_i^{\oplus d} \oplus S_i^{\oplus (m_1-d)} \oplus S_{{{\tau }}i}^{\oplus (n_2-d)} }\big |,\\ |{{\mathcal {C}}}_2|=&q^{-c_{{{\tau }}i,j}e} \big |{\text {Ext}}^1_{kQ}(S_{{{\tau }}i}^{\oplus (n_1-e)}, S_{j})_{N_2\oplus S_{{{\tau }}i}^{\oplus ( t_3^M+d-n_2 )}}\big |\cdot \big |{\text {Ext}}_{\Lambda ^\imath }^1 (S_{{{\tau }}i}^{\oplus n_1},S_i^{\oplus m_2})_{{{\mathbb {K}}}_{{{\tau }}i}^{\oplus e} \oplus S_i^{\oplus (m_2-e)} \oplus S_{{{\tau }}i}^{\oplus (n_1-e)} }\big |. \end{aligned}$$

Proof

The 2 formulas are equivalent, and we only prove the first one. Let \(M'_1:=N_1\oplus S_i^{\oplus (t_1^M-m_2)}\), and

$$\begin{aligned} {{\mathcal {C}}}'_1&:=\{[\xi ]\in {\text {Ext}}^1_{\Lambda ^\imath }( S_i^{\oplus m_1}, S_{j} \oplus S_{{{\tau }}i}^{\oplus n_2})_{L'_1}{|} L'_1\text { admits a short }\\&\quad \text { exact sequence } 0\rightarrow M'_1\rightarrow L'_1\rightarrow {{\mathbb {K}}}_i^{\oplus d}\oplus S_i^{\oplus e} \oplus S_{{{\tau }}i}^{\oplus (n_2-d)} \rightarrow 0\}. \end{aligned}$$

Consider the \(\imath \)quiver algebra with its quiver as in the right figure of (3.8) (the number of arrows from i to j is \( a=-c_{ij}\)), which is denoted by \({}^s\Lambda ^\imath \) to avoid confusions. Then any \({\varvec{s}}_i\Lambda ^\imath \)-module \(L=(L_k,L_\alpha ,L_{\varepsilon _k})\) supported at \(i,{{\tau }}i\) and j with \(L_{\alpha }=0\) for any \(\alpha :{{\tau }}i\rightarrow j\) can be viewed as a \({}^s\Lambda ^\imath \)-module G(L), that is, \(G(L)_i:=L_i\oplus L_{{{\tau }}i}\), \(G(L)_j:=L_j\). Let

$$\begin{aligned} {{\mathcal {C}}}''_1&:=\{[\xi ]\in {\text {Ext}}^1_{^s\Lambda ^\imath }( S_i^{\oplus m_1}, S_{j} \oplus S_{i}^{\oplus n_2})_{L''_1}{|} L''_1\text { admits a short }\\&\quad \text { exact sequence } 0\rightarrow G(M'_1)\rightarrow L''_1\rightarrow {{\mathbb {K}}}_i^{\oplus d}\oplus S_i^{\oplus (n_2-d+e)} \rightarrow 0\}. \end{aligned}$$

Then \(|{{\mathcal {C}}}'_1|=|{{\mathcal {C}}}''_1|\). By applying [24, Proposition 3.10] to compute \([S_i^{\oplus m_1}]\diamond [ S_{j} \oplus S_{i}^{\oplus n_2}]\) in \({{\mathcal {S}}}{{\mathcal {D}}}{{\mathcal {H}}}(^s\Lambda ^\imath )\), one obtains that

$$\begin{aligned} |{{\mathcal {C}}}''_1|=&q^{-c_{ij}d} \big |{\text {Ext}}^1_{kQ^s}(S_i^{\oplus (m_1-d)}, S_{j})_{G(N_1)\oplus S_i^{\oplus (t_1^M+e-m_2)}}\big |\cdot \big |{\text {Ext}}_{^s\Lambda ^\imath }^1 (S_i^{\oplus m_1},S_{ i}^{\oplus n_2})_{{{\mathbb {K}}}_i^{\oplus d} \oplus S_i^{\oplus (m_1+n_1-2d)} }\big |. \end{aligned}$$

Here \(Q^s\) is the quiver . Clearly, we have

$$\begin{aligned} \big |{\text {Ext}}^1_{kQ^s}(S_i^{\oplus (m_1-d)}, S_{j})_{G(N_1)\oplus S_i^{\oplus (t_1^M+e-m_2)}}\big |&= \big |{\text {Ext}}^1_{kQ}(S_i^{\oplus (m_1-d)}, S_{j})_{N_1\oplus S_i^{\oplus (t_1^M+e-m_2)}}\big |,\\ \big |{\text {Ext}}_{^s\Lambda ^\imath }^1 (S_i^{\oplus m_1},S_{ i}^{\oplus n_2})_{{{\mathbb {K}}}_i^{\oplus d} \oplus S_i^{\oplus (m_1+n_1-2d)} }\big |&=\big |{\text {Ext}}_{\Lambda ^\imath }^1 (S_i^{\oplus m_1},S_{{{\tau }}i}^{\oplus n_2})_{{{\mathbb {K}}}_i^{\oplus d} \oplus S_i^{\oplus (m_1-d)} \oplus S_{{{\tau }}i}^{\oplus (n_2-d)} }\big |, \end{aligned}$$

and then the desired formula follows.\(\square \)

Recall the notation \(N_1, N_2\) from (A.3).

Lemma A.3

Retain the notations as above. Then

$$\begin{aligned}&\big |{\text {Ext}}^1_{kQ}(S_i^{\oplus (m_1-d)}\oplus S_{{{\tau }}i}^{\oplus (n_1-e)}, S_{j})_{N\oplus S_i^{\oplus (t_1^M+e-m_2)} \oplus S_{{{\tau }}i}^{\oplus (t_3^M+d-n_2)}} \big |\\&\quad =\big |{\text {Ext}}^1_{kQ}(S_i^{\oplus (m_1-d)}, S_{j})_{N_1\oplus S_i^{\oplus (t_1^M+e-m_2)}}\big |\cdot \big |{\text {Ext}}^1_{kQ}(S_{{{\tau }}i}^{\oplus (n_1-e)}, S_{j})_{N_2\oplus S_{{{\tau }}i}^{\oplus ( t_3^M+d-n_2 )}}\big |. \end{aligned}$$

Proof

Note that N, \(N_1\) and \(N_2\) are indecomposable. Then the orders of their automorphism groups are \(q-1\). A direct computation shows that

$$\begin{aligned} F_{S_i^{\oplus (m_1-d)}\oplus S_{{{\tau }}i}^{\oplus (m_1-e)},S_j}^{N\oplus S_i^{\oplus (t_1^M+e-m_2)} \oplus S_{{{\tau }}i}^{\oplus (t_3^M+d-n_2)}}=1=F_{S_i^{\oplus (m_1-d)}, S_{j}}^{N_1\oplus S_i^{\oplus (t_1^M+e-m_2)}}=F_{S_{{{\tau }}i}^{\oplus (m_1-e)}, S_{j}}^{N_2\oplus S_{{{\tau }}i}^{\oplus (t_3^M+d-n_2) }}, \end{aligned}$$

if they are nonzero.

We have

$$\begin{aligned}&(q-1)|{\text {Aut}}(N\oplus S_i^{\oplus (t_1^M+e-m_2)} \oplus S_{{{\tau }}i}^{\oplus (t_3^M+d-n_2)})|\\&\quad =|{\text {Aut}}(N_1\oplus S_i^{\oplus (t_1^M+e-m_2)})|\cdot |{\text {Aut}}(N_2\oplus S_{{{\tau }}i}^{\oplus (t_3^M+d-n_2) })|. \end{aligned}$$

Using the Riedtman-Peng formula, we have

$$\begin{aligned}&\big |{\text {Ext}}^1_{kQ} (S_i^{\oplus (m_1-d)}\oplus S_{{{\tau }}i}^{\oplus (m_1-e)}, S_{j})_{N\oplus S_i^{\oplus (t_1^M+e-m_2)} \oplus S_{{{\tau }}i}^{\oplus (t_3^M+d-n_2)}} \big |\\&\quad = \frac{\big |{\text {Aut}}(S_i^{\oplus (m_1-d)}\oplus S_{{{\tau }}i}^{\oplus (m_1-e)})\big |\cdot |{\text {Aut}}(S_j)|}{\big |{\text {Aut}}(N\oplus S_i^{\oplus (t_1^M+e-m_2)} \oplus S_{{{\tau }}i}^{\oplus (t_3^M+d-n_2)})\big |}\\&\quad = \frac{\big |{\text {Aut}}(S_i^{\oplus (m_1-d)})\big |\cdot \big |{\text {Aut}}(S_{{{\tau }}i}^{\oplus (m_1-e)})\big |\cdot |{\text {Aut}}(S_j)|^2}{\big |{\text {Aut}}(N_1\oplus S_i^{\oplus (t_1^M+e-m_2)})\big |\cdot \big |{\text {Aut}}(N_2\oplus S_{{{\tau }}i}^{\oplus (t_3^M+d-n_2)})\big |}\\&\quad = \big |{\text {Ext}}^1_{kQ}(S_i^{\oplus (m_1-d)}, S_{j})_{N_1\oplus S_i^{\oplus (t_1^M+e-m_2)}}\big |\cdot \big |{\text {Ext}}^1_{kQ}(S_{{{\tau }}i}^{\oplus (m_1-e)}, S_{j})_{N_2\oplus S_{{{\tau }}i}^{\oplus (t_3^M+d-n_2) }}\big |. \end{aligned}$$

The lemma is proved.\(\square \)

1.4 The proof

Now we can complete the proof of Proposition 5.3. By Lemma A.3 we have

$$\begin{aligned}&\big |{\text {Ext}}^1_{kQ}(S_i^{\oplus (m_1-d)}\oplus S_{{{\tau }}i}^{\oplus (n_1-e)}, S_{j}\oplus S_i^{\oplus (m_2-e)}\oplus S_{{{\tau }}i}^{\oplus (n_2 -d) })_M \big |\\&\quad =\big |{\text {Ext}}^1_{kQ}(S_i^{\oplus (m_1-d)}\oplus S_{{{\tau }}i}^{\oplus (n_1-e)}, S_{j})_{N\oplus S_i^{\oplus (t_1^M+e-m_2)} \oplus S_{{{\tau }}i}^{\oplus (t_3^M+d-n_2)}} \big |\\&\quad =\big |{\text {Ext}}^1_{kQ}(S_i^{\oplus (m_1-d)}, S_{j})_{N_1\oplus S_i^{\oplus (t_1^M+e-m_2)}}\big |\cdot \big |{\text {Ext}}^1_{kQ}(S_{{{\tau }}i}^{\oplus (n_1-e)}, S_{j})_{N_2\oplus S_{{{\tau }}i}^{\oplus ( t_3^M+d-n_2 )}}\big |. \end{aligned}$$

Together with Lemmas A.1 and A.2, we have

$$\begin{aligned} |{{\mathcal {C}}}_M|&= q^{-c_{ij}d-c_{{{\tau }}i,j}e}\big |{\text {Ext}}^1_{kQ}(S_i^{\oplus (m_1-d)}\oplus S_{{{\tau }}i}^{\oplus (n_1-e)}, S_{j}\oplus S_i^{\oplus (m_2-e)}\oplus S_{{{\tau }}i}^{\oplus (n_2-d) })_M \big |\nonumber \\&\quad \cdot \big |{\text {Ext}}_{\Lambda ^\imath }^1 (S_i^{\oplus m_1},S_{{{\tau }}i}^{\oplus n_2})_{{{\mathbb {K}}}_i^{\oplus d} \oplus S_i^{\oplus (m_1-d)} \oplus S_{{{\tau }}i}^{\oplus (n_2-d)} }\big |\cdot \big |{\text {Ext}}_{\Lambda ^\imath }^1 (S_{{{\tau }}i}^{\oplus n_1},S_i^{\oplus m_2})_{{{\mathbb {K}}}_{{{\tau }}i}^{\oplus e} \oplus S_i^{\oplus (m_2-e)} \oplus S_{{{\tau }}i}^{\oplus (n_1-e)} }\big |. \end{aligned}$$
(A.8)

By a standard computation (see e.g. [33]), we have

$$\begin{aligned}&F_{S_i^{\oplus (m_1-d)}\oplus S_{{{\tau }}i}^{\oplus (n_1-e)}, S_{j}\oplus S_i^{\oplus (m_2-e)}\oplus S_{{{\tau }}i}^{\oplus (n_2-d) }}^{ M}\\&\quad ={\mathbf{v}}^{(t_1^M-(m_2-e))(m_2-e)} \begin{bmatrix} t_1^M\\ m_2-e \end{bmatrix} _{\mathbf{v}}\cdot {\mathbf{v}}^{(t_3^M-(n_2-d))(n_2-d)} \begin{bmatrix} t_3^M\\ n_2-d \end{bmatrix} _{\mathbf{v}}. \end{aligned}$$

Using (2.25), one can obtain that

$$\begin{aligned}&\big |{\text {Ext}}^1_{kQ}(S_i^{\oplus (m_1-d)}\oplus S_{{{\tau }}i}^{\oplus (n_1-e)}, S_{j}\oplus S_i^{\oplus (m_2-e)}\oplus S_{{{\tau }}i}^{\oplus (n_2-d) })_M \big |\\&\quad = \prod _{i=0}^{m_1-d-1}(q^{m_1-d}-q^i)\prod _{i=0}^{n_1-e-1}(q^{n_1-e}-q^i) \prod _{i=0}^{m_2-e-1}(q^{m_2-e}-q^i)\prod _{i=0}^{n_2-d-1}(q^{n_2-d}-q^i)\\ {}&\quad \times {\mathbf{v}}^{ 2(m_1-d)(m_2-e)+ 2(n_1-e)(n_2-d)}{\mathbf{v}}^{(t_1^M-(m_2-e))(m_2-e)+(t_3^M-(n_2-d))(n_2-d)}\\&\qquad \times \begin{bmatrix} t_1^M\\ m_2-e \end{bmatrix} _{\mathbf{v}}\begin{bmatrix} t_3^M\\ n_2-d \end{bmatrix} _{\mathbf{v}}\frac{(q-1)}{|{\text {Aut}}(M)|}\\&\quad = {\mathbf{v}}^{(m_1-d)^2+{ m_1-d \atopwithdelims ()2} + (n_1-e)^2 + { n_1-e \atopwithdelims ()2} + (m_2-e)^2 +{ m_2-e \atopwithdelims ()2} +(n_2-d)^2 + {n_2-d \atopwithdelims ()2} } \\&\qquad \times {\mathbf{v}}^{ 2(m_1-d)(m_2-e)+ 2(n_1-e)(n_2-d)}{\mathbf{v}}^{(t_1^M-(m_2-e))(m_2-e)+(t_3^M-(n_2-d))(n_2-d)} ({\mathbf{v}}-{\mathbf{v}}^{-1})^{m_1+m_2+n_1+n_2-2d-2e} \\&\qquad \times [m_1-d]_{\mathbf{v}}^! [n_1-e]_{\mathbf{v}}^! [m_2-e]_{\mathbf{v}}^! [n_2-d]_{\mathbf{v}}^!\begin{bmatrix} t_1^M\\ m_2-e \end{bmatrix} _{\mathbf{v}}\begin{bmatrix} t_3^M\\ n_2-d \end{bmatrix} _{\mathbf{v}}\frac{(q-1)}{|{\text {Aut}}(M)|}. \end{aligned}$$

Furthermore, we have

$$\begin{aligned}&\big |{\text {Ext}}_{\Lambda ^\imath }^1 (S_i^{\oplus m_1},S_{{{\tau }}i}^{\oplus n_2})_{{{\mathbb {K}}}_i^{\oplus d} \oplus S_i^{\oplus (m_1-d)} \oplus S_{{{\tau }}i}^{\oplus (n_2-d)} }\big | \nonumber \\&\quad = \frac{\prod _{i=0}^{d-1} (q^{m_1}-q^{i}) \prod _{i=0}^{d-1} (q^{n_2}-q^{i})}{\prod _{i=0}^{d-1}(q^d-q^i)}\nonumber \\&\quad = {\mathbf{v}}^{d(m_1+n_2-d)+ {d \atopwithdelims ()2} } ({\mathbf{v}}-{\mathbf{v}}^{-1})^d \begin{bmatrix} m_1\\ d \end{bmatrix} _{\mathbf{v}}\begin{bmatrix} n_2\\ d \end{bmatrix} _{\mathbf{v}}[d]_{\mathbf{v}}^!, \end{aligned}$$
(A.9)

and

$$\begin{aligned}&\big |{\text {Ext}}_{\Lambda ^\imath }^1 (S_{{{\tau }}i}^{\oplus n_1},S_i^{\oplus m_2})_{{{\mathbb {K}}}_{{{\tau }}i}^{\oplus e} \oplus S_i^{\oplus (m_2-e)} \oplus S_{{{\tau }}i}^{\oplus (n_1-e)} }\big |={\mathbf{v}}^{e(n_1+m_2-e)+ {e \atopwithdelims ()2} } ({\mathbf{v}}-{\mathbf{v}}^{-1})^e\begin{bmatrix} m_2\\ e \end{bmatrix} _{\mathbf{v}}\begin{bmatrix} n_1\\ e \end{bmatrix} _{\mathbf{v}}[e]_{\mathbf{v}}^!. \end{aligned}$$

Plugging into (A.8), we have

$$\begin{aligned} |{{\mathcal {C}}}_M|&={\mathbf{v}}^{-2c_{ij}d-2c_{{{\tau }}i,j}e} {\mathbf{v}}^{(m_1-d)^2+{ m_1-d \atopwithdelims ()2} + (n_1-e)^2 + { n_1-e \atopwithdelims ()2} + (m_2-e)^2 +{ m_2-e \atopwithdelims ()2} +(n_2-d)^2 + {n_2-d \atopwithdelims ()2} } \\&\quad \times {\mathbf{v}}^{d(m_1+n_2-d)+ {d \atopwithdelims ()2} +e(n_1+m_2-e)+ {e \atopwithdelims ()2}} {\mathbf{v}}^{ 2(m_1-d)(m_2-e)+ 2(n_1-e)(n_2-d)}\\&\quad \times {\mathbf{v}}^{(t_1^M-(m_2-e))(m_2-e)+(t_3^M-(n_2-d))(n_2-d)} ({\mathbf{v}}-{\mathbf{v}}^{-1})^{m_1+m_2+n_1+n_2-d-e}\\&\quad \times \frac{[m_1]_{\mathbf{v}}^![m_2]_{\mathbf{v}}^![n_1]_{\mathbf{v}}^![n_2]_{\mathbf{v}}^!}{[d]_{\mathbf{v}}^![e]_{\mathbf{v}}^!}\begin{bmatrix} t_1^M\\ m_2-e \end{bmatrix} _{\mathbf{v}}\begin{bmatrix} t_3^M\\ n_2-d \end{bmatrix} _{\mathbf{v}}\frac{(q-1)}{|{\text {Aut}}(M)|}\\&= {\mathbf{v}}^{-2c_{ij}d-2c_{{{\tau }}i,j}e} {\mathbf{v}}^{ 2(m_1-d)(m_2-e)+ 2(n_1-e)(n_2-d)} ({\mathbf{v}}-{\mathbf{v}}^{-1})^{m_1+m_2+n_1+n_2-d-e}\\&\quad \times {\mathbf{v}}^{p'(t_3^M,d,m_1,n_2)} \frac{[m_1]_{\mathbf{v}}^![n_2]_{\mathbf{v}}^!}{[d]_{\mathbf{v}}^!} \begin{bmatrix} t_3^M\\ n_2-d \end{bmatrix} _{\mathbf{v}}{\mathbf{v}}^{p'(t_1^M,e,n_1,m_2)} \frac{[m_2]_{\mathbf{v}}^![n_1]_{\mathbf{v}}^!}{[e]_{\mathbf{v}}^!} \begin{bmatrix} t_1^M\\ m_2-e \end{bmatrix} _{\mathbf{v}}\frac{(q-1)}{|{\text {Aut}}(M)|}. \end{aligned}$$

The desired formula (5.7) follows from the above formula and (A.2). This completes the proof of Proposition  5.3.

Appendix B: Proof of the formula (3.7)

In this appendix, we provide the details for the proof of the formula (3.7).

1.1 Computation of \([S'_i]_{{\bar{1}}}^{(r)}*[S'_j] *[S'_i]_{\overline{1}+\overline{a}}^{(s)}\)

Let us first compute \([S'_i]_{{\bar{1}}}^{(r)}*[S'_j] *[S'_i]_{\overline{1}+\overline{a}}^{(s)}\), depending on the parity of r.

1.1.1 r is even

For any \(s\ge 0\) such that \(r+s+2t=a\) with \(t\ge 0\), we have by Lemma 3.1 and Lemma 3.3

$$\begin{aligned} {[}S'_i]_{{\bar{1}}}^{(r)}*[S'_j] *[S'_i]_{\overline{1}+\overline{a}}^{(s)}&= \sum _{k=0}^{\frac{r}{2}}\frac{{\mathbf{v}}^{k(k+1)-\left( {\begin{array}{c}r-2k\\ 2\end{array}}\right) } \cdot ({\mathbf{v}}-{\mathbf{v}}^{-1})^k }{[r-2k]_{\mathbf{v}}^{!}[2k]_{\mathbf{v}}^{!!}} [(r-2k)S'_i]*[{{\mathbb {K}}}'_i]^k*[S'_j] \\&\quad * \sum _{m=0}^{\lfloor \frac{s}{2}\rfloor } \frac{{\mathbf{v}}^{m(m+1)-\left( {\begin{array}{c}s-2m\\ 2\end{array}}\right) }\cdot ({\mathbf{v}}-{\mathbf{v}}^{-1})^{m}}{[s-2m]_{\mathbf{v}}^{!} [2m]_{\mathbf{v}}^{!!}} [(s-2m)S'_i]*[{{\mathbb {K}}}'_i]^m \\&= \sum _{k=0}^{\frac{r}{2}}\sum _{m=0}^{\lfloor \frac{s}{2}\rfloor } \frac{{\mathbf{v}}^{k(k+1)+m(m+1)-\left( {\begin{array}{c}r-2k\\ 2\end{array}}\right) -\left( {\begin{array}{c}s-2m\\ 2\end{array}}\right) }\cdot ({\mathbf{v}}-{\mathbf{v}}^{-1})^{k+m} }{[r-2k]_{\mathbf{v}}^![s-2m]_{\mathbf{v}}^![2k]_{\mathbf{v}}^{!!}[2m]_{\mathbf{v}}^{!!}}\\&\quad \times [(r-2k)S'_i]*[S'_j]*[(s-2m)S'_i]*[{{\mathbb {K}}}'_i]^{k+m}\\&= \sum _{k=0}^{\frac{r}{2}}\sum _{m=0}^{\lfloor \frac{s}{2}\rfloor } \sum _{n=0}^{\min \{r-2k,s-2m\}} \sum _{[M]\in {\mathcal {I}}_{r+s-2k-2m-2n}} \frac{{\mathbf{v}}^{k(k+1)+m(m+1)-\left( {\begin{array}{c}r-2k\\ 2\end{array}}\right) -\left( {\begin{array}{c}s-2m\\ 2\end{array}}\right) } }{[r-2k]_{\mathbf{v}}^![s-2m]_{\mathbf{v}}^![2k]_{\mathbf{v}}^{!!}[2m]_{\mathbf{v}}^{!!}}\\&\quad \times {\mathbf{v}}^{p(a,n,r-2k,s -2m)} ({\mathbf{v}}-{\mathbf{v}}^{-1})^{r+s -k -m -n+1 } \frac{[r-2k]_{\mathbf{v}}^{!} [s -2m]_{\mathbf{v}}^{!}}{[n]_{\mathbf{v}}^{!}} \\&\quad \times \begin{bmatrix} u_M\\ s -2m-n \end{bmatrix} _{\mathbf{v}}\frac{[M]}{|{\text {Aut}}(M)|}*[{{\mathbb {K}}}'_i]^{n+k+m}. \end{aligned}$$

This can be simplified to be

$$\begin{aligned}{}[S'_i]_{{\bar{1}}}^{(r)}*[S'_j] *[S'_i]_{{\bar{1}}}^{(s)}&= \sum _{k=0}^{\frac{r}{2}}\sum _{m=0}^{\lfloor \frac{s}{2}\rfloor } \sum _{n=0}^{r-2k} \sum _{[M]\in {\mathcal {I}}_{r+s-2k-2m-2n}} \frac{{\mathbf{v}}^{{{\mathcal {Z}}}(a,r,s,k,m,n)+2k+2m} ({\mathbf{v}}-{\mathbf{v}}^{-1})^{r+s-k-m-n+1} }{[n]_{\mathbf{v}}^{!} [2k]_{\mathbf{v}}^{!!}[2m]_{\mathbf{v}}^{!!}}\\&\quad \times \begin{bmatrix} u_M\\ s -2m-n \end{bmatrix} _{\mathbf{v}}\frac{[M] *[{{\mathbb {K}}}'_i]^{n+k+m}}{|{\text {Aut}}(M)|}. \end{aligned}$$

1.1.2 r is even

For any \(s\ge 0\) such that \(r+s+2t=a\) with \(t\ge 0\), we have by Lemma 3.1 and Lemma 3.3

$$\begin{aligned} {[}S'_i]_{{\bar{1}}}^{(r)}*[S'_j] *[S'_i]_{\overline{1}+\overline{a}}^{(s)}&=\sum _{k=0}^{\lfloor \frac{r}{2}\rfloor }\frac{{\mathbf{v}}^{k(k-1)-\left( {\begin{array}{c}r-2k\\ 2\end{array}}\right) } \cdot ({\mathbf{v}}-{\mathbf{v}}^{-1})^k }{[r-2k]_{\mathbf{v}}^![2k]_{\mathbf{v}}^{!!}} [(r-2k)S'_i]*[{{\mathbb {K}}}'_i]^k*[S'_j]\\&\quad * \sum _{m=0}^{\lfloor \frac{s}{2}\rfloor } \frac{{\mathbf{v}}^{m(m-1)-\left( {\begin{array}{c}s-2m\\ 2\end{array}}\right) }\cdot ({\mathbf{v}}-{\mathbf{v}}^{-1})^{m}}{[s-2m]_{\mathbf{v}}^{!}[2m]_{\mathbf{v}}^{!!}} [(s-2m)S'_i]*[{{\mathbb {K}}}'_i]^m\\&=\sum _{k=0}^{\lfloor \frac{r}{2}\rfloor }\sum _{m=0}^{\lfloor \frac{s}{2}\rfloor } \sum _{n=0}^{\min \{r-2k,s-2m\}} \sum _{[M]\in {\mathcal {I}}_{r+s-2k-2m-2n}} \frac{{\mathbf{v}}^{k(k-1)+m(m-1)-\left( {\begin{array}{c}r-2k\\ 2\end{array}}\right) -\left( {\begin{array}{c}s-2m\\ 2\end{array}}\right) } }{[r-2k]_{\mathbf{v}}^![s-2m]_{\mathbf{v}}^![2k]_{\mathbf{v}}^{!!}[2m]_{\mathbf{v}}^{!!}}\\&\quad \times {\mathbf{v}}^{p(a,n,r-2k, s -2m)} ({\mathbf{v}}-{\mathbf{v}}^{-1})^{r+s -k -m -n+1 } \frac{[r-2k]_{\mathbf{v}}^{!} [s -2m]_{\mathbf{v}}^{!}}{[n]_{\mathbf{v}}^{!}}\\&\quad \times \begin{bmatrix} u_M\\ s -2m-n \end{bmatrix} _{\mathbf{v}}\frac{[M]}{|{\text {Aut}}(M)|}*[{{\mathbb {K}}}'_i]^{n+k+m}. \end{aligned}$$

This can be simplified to be

$$\begin{aligned}&[S'_i]_{{\bar{1}}}^{(r)}*[S'_j] *[S'_i]_{\overline{1}+\overline{a}}^{(s)} = \sum _{k=0}^{\lfloor \frac{r}{2}\rfloor }\sum _{m=0}^{\lfloor \frac{s}{2}\rfloor } \sum _{n=0}^{r-2k} \sum _{[M]\in {\mathcal {I}}_{r+s-2k-2m-2n}}\\&\frac{{\mathbf{v}}^{{{\mathcal {Z}}}(a,r,s,k,m,n)} ({\mathbf{v}}-{\mathbf{v}}^{-1})^{r+s -k -m -n+1} }{[n]_{\mathbf{v}}^{!} [2k]_{\mathbf{v}}^{!!}[2m]_{\mathbf{v}}^{!!}} \begin{bmatrix} u_M\\ s -2m-n \end{bmatrix} _{\mathbf{v}}\frac{[M] *[{{\mathbb {K}}}'_i]^{n+k+m}}{|{\text {Aut}}(M)|}. \end{aligned}$$

1.2 Reduction for (3.7)

Summing up the above two cases, we obtain

$$\begin{aligned} \text {RHS}(3.7)&= \sum _{r=0,2{|} r}^{a} \sum _{k=0}^{\frac{r}{2}}\sum _{m=0}^{\lfloor \frac{a-r}{2}\rfloor } \sum _{n=0}^{r-2k} \sum _{[M]\in {\mathcal {I}}_{a-2k-2m-2n}} (-1)^a ({\mathbf{v}}-{\mathbf{v}}^{-1})^{ -k -m -n+1}\nonumber \\&\quad \times \frac{{\mathbf{v}}^{r+{{\mathcal {Z}}}(a,r,a-r,k,m,n)+2k+2m-a} }{[n]_{\mathbf{v}}^{!} [2k]_{\mathbf{v}}^{!!}[2m]_{\mathbf{v}}^{!!}} \begin{bmatrix} u_M\\ a-r -2m-n \end{bmatrix} _{\mathbf{v}}\frac{[M] *[{{\mathbb {K}}}'_i]^{n+k+m}}{|{\text {Aut}}(M)|} \nonumber \\&\quad -\sum _{r=0,2\not \mid r}^{a}\sum _{k=0}^{\lfloor \frac{r}{2}\rfloor }\sum _{m=0}^{\lfloor \frac{a-r}{2}\rfloor } \sum _{n=0}^{r-2k} \sum _{[M]\in {\mathcal {I}}_{a-2k-2m-2n}} (-1)^a ({\mathbf{v}}-{\mathbf{v}}^{-1})^{ -k -m -n+1}\nonumber \\&\quad \times \frac{{\mathbf{v}}^{r+{{\mathcal {Z}}}(a,r,a-r,k,m,n)-a} }{[n]_{\mathbf{v}}^{!} [2k]_{\mathbf{v}}^{!!}[2m]_{\mathbf{v}}^{!!}} \begin{bmatrix} u_M\\ a-r -2m-n \end{bmatrix} _{\mathbf{v}}\frac{[M] *[{{\mathbb {K}}}'_i]^{n+k+m}}{|{\text {Aut}}(M)|} \nonumber \\&\quad -\sum _{t\ge 1}\sum _{r=0,2\not \mid r}^{a-2t}\sum _{k=0}^{\lfloor \frac{r}{2}\rfloor }\sum _{m=0}^{\lfloor \frac{a-r}{2}\rfloor -t} \sum _{n=0}^{r-2k} \sum _{[M]\in {\mathcal {I}}_{a-2t-2k-2m-2n}} (-1)^a ({\mathbf{v}}-{\mathbf{v}}^{-1})^{ -k -m -n+1} \nonumber \\&\quad \times \frac{{\mathbf{v}}^{r+ {{\mathcal {Z}}}(a,r,a-2t-r,k,m,n) -a+2t} }{[n]_{\mathbf{v}}^{!} [2k]_{\mathbf{v}}^{!!}[2m]_{\mathbf{v}}^{!!}} \begin{bmatrix} u_M\\ a-2t-r -2m-n \end{bmatrix} _{\mathbf{v}}\frac{[M] *[{{\mathbb {K}}}'_i]^{n+k+m+t}}{|{\text {Aut}}(M)|}. \end{aligned}$$
(B.1)

Fix

$$\begin{aligned} d =t+k+m+n. \end{aligned}$$

We have reduced the proof of (3.7) to proving the coefficient of \(\frac{[M] *[{{\mathbb {K}}}'_i]^{d}}{|{\text {Aut}}(M)|}\) of the RHS of (B.1) is 0 for any given \([M] \in {\mathcal {I}}_{a-2d}\) if not both d and \(u_M\) are zeros.

Set \(u=u_M\), and set

$$\begin{aligned} A'(a,d,u)&= \sum _{t\ge 0}\sum _{r=0,2\not \mid r}^{a-2t}\sum _{k=0}^{\lfloor \frac{r}{2}\rfloor }\sum _{m=0}^{\lfloor \frac{a-r}{2}\rfloor -t} \delta \{0\le n \le r-2k\} \nonumber \\&\quad \times \frac{{\mathbf{v}}^{r+{{\mathcal {Z}}}(a,r,a-2t-r,k,m,n)-a+2t} ({\mathbf{v}}-{\mathbf{v}}^{-1})^{-k-m-n+1} }{[n]_{\mathbf{v}}^{!} [2k]_{\mathbf{v}}^{!!}[2m]_{\mathbf{v}}^{!!}} \begin{bmatrix} u\\ a-2t-r -2m-n \end{bmatrix} _{\mathbf{v}}\nonumber \\&\quad -\sum _{r=0,2{|} r}^{a} \sum _{k=0}^{\frac{r}{2}}\sum _{m=0}^{\lfloor \frac{a-r}{2}\rfloor } \delta \{0\le n \le r-2k\} \nonumber \\&\quad \times \frac{{\mathbf{v}}^{r+{{\mathcal {Z}}}(a,r,a-r,k,m,n)+2k+2m-a} ({\mathbf{v}}-{\mathbf{v}}^{-1})^{ -k -m -n+1} }{[n]_{\mathbf{v}}^{!} [2k]_{\mathbf{v}}^{!!}[2m]_{\mathbf{v}}^{!!}} \begin{bmatrix} u\\ a -r-2m-n \end{bmatrix} _{\mathbf{v}}. \end{aligned}$$
(B.2)

See (3.12) for \({{\mathcal {Z}}}(\cdot , \cdot , \cdot , \cdot , \cdot , \cdot )\) and also see (3.10) for \(p(\cdot , \cdot , \cdot , \cdot )\).

Then the coefficient of \(\frac{[M] *[{{\mathbb {K}}}'_i]^{d}}{|{\text {Aut}}(M)|}\) of the RHS of (B.1) is \((-1)^a A'(a,d,u_M)\). Summarizing, we have established the following (which is the counterpart of Proposition 3.4).

Proposition B.1

The formula (3.7) is equivalent to the following identity

$$\begin{aligned} A'(a,d,u) =0, \end{aligned}$$
(B.3)

for non-negative integers adu subject to the constraints:

$$\begin{aligned} 0\le d\le \frac{a}{2}, \quad 0\le u \le a-2d, \quad d \text { and}\, u\,\text { not both zero}. \end{aligned}$$
(B.4)

1.3 Reduction for the identity (B.3)

We shall denote the 2 summands in \(A' =A'(a,d,u)\) in (B.2) as \(A'_0, A'_1\), and thus

$$\begin{aligned} A' =A'_0 -A'_1. \end{aligned}$$

Compare with (3.14). We also denote

$$\begin{aligned} w&=r-2k-n. \end{aligned}$$
(B.5)

Set

$$\begin{aligned} d= k+m+n +t \end{aligned}$$
(B.6)

in the \(A'_0\) side, and \(d =k+m+n\) in the \(A'_1\) side. Using the same argument as in §3.6, for \(d>0\), we see that the identity (B.3) for \(d>0\) is equivalent to the following identity

$$\begin{aligned} \sum _{{\mathop {t+k+m+n =d}\limits ^{w+n {\text { odd}}}}} \frac{{\mathbf{v}}^{t^2 -2dt +t +2nt +\left( {\begin{array}{c}n+1\\ 2\end{array}}\right) -2km -2m}}{[n]^!_{\mathbf{v}}[2k]^{!!}_{\mathbf{v}}[2m]^{!!}_{\mathbf{v}}} ({\mathbf{v}}-{\mathbf{v}}^{-1})^{t} - \sum _{{\mathop {k+m+n =d}\limits ^{w+n {\text { even}}}}} \frac{{\mathbf{v}}^{\left( {\begin{array}{c}n+1\\ 2\end{array}}\right) -2km +2k}}{[n]^!_{\mathbf{v}}[2k]^{!!}_{\mathbf{v}}[2m]^{!!}_{\mathbf{v}}} =0. \end{aligned}$$
(B.7)

The identity (B.7) is clearly equivalent to the identity (3.23) (by switching the parity of w), which was established in Sect. 4.

The identity (B.3) for \(d=0\) holds exactly in the same way as for (3.24) (up to an irrelevant overall sign). Therefore, the identity (B.3) is fully established, and then the formula (3.7) follows by Proposition B.1.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Wang, W. Braid group symmetries on quasi-split \(\imath \)quantum groups via \(\imath \)Hall algebras. Sel. Math. New Ser. 28, 84 (2022). https://doi.org/10.1007/s00029-022-00800-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-022-00800-3

Keywords

Mathematics Subject Classification

Navigation