Skip to main content
Log in

Fusion categories for affine vertex algebras at admissible levels

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

The main result is that the category of ordinary modules of an affine vertex operator algebra of a simply laced Lie algebra at admissible level is rigid and thus a braided fusion category. If the level satisfies a certain coprime property then it is even a modular tensor category. In all cases open Hopf links coincide with the corresponding normalized S-matrix entries of torus one-point functions. This is interpreted as a Verlinde formula beyond rational vertex operator algebras. A preparatory Theorem is a convenient formula for the fusion rules of rational principal W-algebras of any type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, Y.-Z.: Rigidity and modularity of vertex tensor categories. Commun. Contemp. Math. 10, 871–911 (2008)

    Article  MathSciNet  Google Scholar 

  2. Huang, Y.-Z.: Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math. 10, 103–154 (2008)

    Article  MathSciNet  Google Scholar 

  3. Verlinde, E.P.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B 300, 360–376 (1988)

    Article  Google Scholar 

  4. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, I: Introduction and strongly graded algebras and their generalized modules, Conformal Field Theories and Tensor Categories. In: Bai, C., Fuchs, J., Huang, Y.-Z., Kong, L., Runkel, I., Schweigert, C. (eds.) Proceedings of a Workshop Held at Beijing International Center for Mathematics Research, Mathematical Lectures from Beijing University, vol. 2, pp. 169–248. Springer, New York (2014)

  5. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, II: Logarithmic formal calculus and properties of logarithmic intertwining operators, arXiv:1012.4196

  6. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for gener- alized modules for a conformal vertex algebra, III: Intertwining maps and tensor product bifunctors. arXiv:1012.4197

  7. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, IV: constructions of tensor product bifunctors and the compatibility conditions. arXiv:1012.4198

  8. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, V: convergence condition for intertwining maps and the corresponding compatibility condition. arXiv:1012.4199

  9. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, VI: expansion condition, associativity of logarithmic intertwining operators, and the associativity isomorphisms. arXiv:1012.4202

  10. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, VII: convergence and extension properties and applications to expansion for intertwining maps. arXiv:1110.1929

  11. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for general- ized modules for a conformal vertex algebra, VIII: Braided tensor category structure on categories of generalized modules for a conformal vertex algebra. arXiv:1110.1931

  12. Creutzig, T., Huang, Y.Z., Yang, J.: Braided tensor categories of admissible modules for affine Lie algebras. Commun. Math. Phys. 362(3), 827 (2018)

    Article  MathSciNet  Google Scholar 

  13. Frenkel, I.B., Malikov, F.: Kazhdan-Lusztig tensoring and Harish-Chandra categories. arXiv:q-alg/9703010

  14. Arakawa, T.: Rationality of admissible affine vertex algebras in the category O. Duke Math. J. 165, 67–93 (2016)

    Article  MathSciNet  Google Scholar 

  15. Arakawa, T., Creutzig, T., Linshaw, A.R.: W-algebras as coset vertex algebras. arXiv:1801.03822 [math.QA]

  16. Creutzig, T., Kanade, S., McRae, R.: Tensor categories for vertex operator superalgebra extensions. arXiv:1705.05017

  17. Fröhlich, J., Fuchs, J., Runkel, I., Schweigert, C.: Correspondences of ribbon categories. Adv. Math. 199, 192–329 (2006)

    Article  MathSciNet  Google Scholar 

  18. Kirillov Jr., A., Ostrik, V.: On a q-analogue of the McKay correspondence and the ADE classification of sl2 conformal field theories. Adv. Math. 171, 183–227 (2002)

    Article  MathSciNet  Google Scholar 

  19. Huang, Y.-Z., Kirillov, A., Lepowsky, J.: Braided tensor categories and extensions of vertex operator algebras. Commun. Math. Phys. 337, 1143–1159 (2015)

    Article  MathSciNet  Google Scholar 

  20. Arakawa, T.: Rationality of W-algebras: principal nilpotent cases. Ann. Math. 182(2), 565–694 (2015)

    Article  MathSciNet  Google Scholar 

  21. Aganagic, M., Frenkel, E., Okounkov, A.: Quantum q-langlands correspondence. Trans. Mosc. Math. Soc. 79, 1 (2018)

    Article  MathSciNet  Google Scholar 

  22. Creutzig, T., Frohlich, J., Kanade, S.: Representation theory of \(L_k(\mathfrak{osp} \left(1 \vert 2 \right))\) from vertex tensor categories and Jacobi forms. Proc. Am. Math. Soc. 146(11), 4571 (2018)

    Google Scholar 

  23. Creutzig, T., Kanade, S., Liu, T., Ridout, D.: Cosets, characters and fusion for admissible-level \(\mathfrak{osp}(1 \vert 2)\) minimal models. Nucl. Phys. B 938, 22 (2019)

    Google Scholar 

  24. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories, Mathematical Surveys and Monographs, vol. 205. American Mathematical Society, Providence (2015)

    Book  Google Scholar 

  25. Turaev, V.G.: Quantum invariants of knots and 3-manifolds. de Gruyter Studies in Mathematics, 18. Walter de Gruyter & Co., Berlin. x+588 pp (1994)

  26. Bakalov, B., Kirillov, A.: Lectures on Tensor Categories and Modular Functors, University Lecture Series, vol. 21. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  27. Arakawa, T., Kawasetsu, K.: Quasi-lisse vertex algebras and modular linear differential equations. arXiv:1610.05865 [math.QA]

  28. Creutzig, T., Gannon, T.: Logarithmic conformal field theory, log-modular tensor categories and modular forms. J. Phys. A 50(40), 404004 (2017)

    Article  MathSciNet  Google Scholar 

  29. Gainutdinov, A.M., Runkel, I.: The non-semisimple Verlinde formula and pseudo-trace functions. arXiv:1605.04448 [math.QA]

  30. Creutzig, T., Ridout, D.: Modular data and Verlinde formulae for fractional Level WZW models I. Nucl. Phys. B 865, 83 (2012)

    Article  MathSciNet  Google Scholar 

  31. Creutzig, T., Ridout, D.: Modular data and Verlinde formulae for fractional Level WZW models II. Nucl. Phys. B 875, 423 (2013)

    Article  MathSciNet  Google Scholar 

  32. Frenkel, E., Kac, V., Wakimoto, M.: Characters and fusion rules for W algebras via quantized Drinfeld–Sokolov reductions. Commun. Math. Phys. 147, 295 (1992)

    Article  MathSciNet  Google Scholar 

  33. Arakawa, T., Ekeren, J.V.: Modularity of relatively rational vertex algebras and fusion rules of regular affine W-algebras. arXiv:1612.09100 [math.RT]

  34. Feigin, B., Frenkel, E.: Quantization of the Drinfeld–Sokolov reduction. Phys. Letts. B 246, 75–81 (1990)

    Article  MathSciNet  Google Scholar 

  35. Feigin, B., Frenkel, E.: Integrals of motion and quantum groups. In Integrable systems and quantum groups. Lecture Notes in Mathematics, vol. 1620, pp. 349–418. Springer, Berlin (1996)

  36. Creutzig, T., Linshaw, A.R.: Cosets of the \(W^k(sl_4, f_{subreg})\)-algebra. Contemp. Math. 711, 105–117 (2018)

    Google Scholar 

  37. Arakawa, T., Lam, C.H., Yamada, H.: Parafermion vertex operator algebras and W-algebras. arXiv:1701.06229

  38. Arakawa, T., Creutzig, T., Linshaw, A.: Cosets of Bershadsky–Polyakov algebras and rational W-algebras of type A. Selecta Math. 23(4), 2369–2395 (2017)

    Article  MathSciNet  Google Scholar 

  39. Linshaw, A.R.: Universal two-parameter \({\cal{W}}_{\infty }\)-algebra and vertex algebras of type \({\cal{W}} (2,3,\dots , N)\). arXiv:1710.02275 [math.RT]

  40. Creutzig, T., Gaiotto, D.: Vertex algebras for S-duality. arXiv:1708.00875 [hep-th]

  41. Kac, V.G., Wakimoto, M.: Modular invariant representations of infinite dimensional Lie algebras and superalgebras. Proc. Nat. Acad. Sci. 85, 49–56 (1988)

    Article  MathSciNet  Google Scholar 

  42. Arakawa, T.: Introduction to W-algebras and their representation theory. arXiv:1605.00138 [math.RT]

  43. Arakawa, T.: Representation theory of W-Algebras. Invent. Math. 169(2), 219–320 (2007)

    Article  MathSciNet  Google Scholar 

  44. Arakawa, T.: Associated varieties of modules over Kac-Moody algebras and \(C_2\)-cofiniteness of W-algebras. The International Mathematics Research Notices, pp. 11605–11666 (2015)

Download references

Acknowledgements

I am very grateful to Terry Gannon for many discussions on related issues and to Jinwei Yang, Yi-Zhi Huang, Andrew Linshaw, Tomoyuki Arakawa, Shashank Kanade and Robert McRae for the collaborations on the works that were needed for this paper. I am supported by NSERC \(\#\)RES0020460.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Creutzig.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Creutzig, T. Fusion categories for affine vertex algebras at admissible levels. Sel. Math. New Ser. 25, 27 (2019). https://doi.org/10.1007/s00029-019-0479-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0479-6

Mathematics Subject Classification

Navigation