Skip to main content
Log in

Weak and very weak solutions to the viscous Cahn–Hilliard–Oberbeck–Boussinesq phase-field system on two-dimensional bounded domains

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider weak and very weak solutions to the viscous Cahn–Hilliard–Oberbeck–Boussinesq system for non-isothermal, viscous and incompressible binary fluid flows in two-dimensional bounded domains. The source functions have low spatial regularities, and the initial data belong to some interpolation spaces. The essential tools employed in the analysis are the extended maximal parabolic regularity for the associated linearized system and the well-posedness of the nonlinear part with the solution of the linearized dynamics as the frozen coefficients. We resolve the linear system by decomposition into the viscous biharmonic heat, Stokes, and heat equations. A spectral Faedo–Galerkin framework shall be pursued for the nonlinear part. Higher integrability with respect to time will be established using interpolation and compactness methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Abels. Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities. Comm. Math. Phys., 289:45–73, 2009. https://doi.org/10.1007/s00220-009-0806-4.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Abels. On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal., 194:463–506, 2009. https://doi.org/10.1007/s00205-008-0160-2.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Abels, D. Depner, and H. Garcke. Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities. J. Math. Fluid Mech., 15:453–480, 2013. https://doi.org/10.1007/s00021-012-0118-x.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Abels, D. Depner, and H. Garcke. On an incompressible Navier–Stokes/Cahn–Hilliard system with degenerate mobility. Ann. Inst. H. Poincaré Anal. Non Linéaire, 30:1175–1190, 2013. https://doi.org/10.1016/j.anihpc.2013.01.002.

  5. H. Abels and M. Wilke. Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy. Nonlinear Anal., 67:3176–3193, 2007. https://doi.org/10.1016/j.na.2006.10.002.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. A. Adams. Sobolev Spaces. Academic Press, New York, 1975.

    MATH  Google Scholar 

  7. H. Amann. Linear and Quasilinear Parabolic Problems. Vol. 1. Birkhäuser, Boston, 1995.

    Book  Google Scholar 

  8. H. Amann. On the strong solvability of the Navier–Stokes equations. J. Math. Fluid Mech., 2:16–98, 2000. https://doi.org/10.1007/s000210050018.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Amann. Linear parabolic problems involving measures. Rev. R. Acad. Cien. Serie A. Mat., 95:85–119, 2001. https://doi.org/10.5167/uzh-21986.

  10. H. Amann. Nonhomogeneous Navier–Stokes equations with integrable low-regularity data. In V.A. Solonnikov M.Sh. Birman, S. Hildebrandt and N.N. Uraltseva, editors, Non-linear Problems in Mathematical Physics and Related Problems II, pages 1–26. Kluwer Academic/Plenum Publ., New York, 2002. https://doi.org/10.5167/uzh-21915.

  11. H. Amann. Navier–Stokes equations with nonhomogeneous Dirichlet data. J. Nonlinear Math. Phys., 10 (Suppl. 1):1–11, 2003. https://doi.org/10.2991/jnmp.2003.10.s1.1.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Bergh and J. Löfström. Interpolation Spaces: An Introduction. Springer-Verlag, Berlin, 1976.

    Book  Google Scholar 

  13. J. Boussinesq. Théorie analytique de la chaleur: Mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière, volume 2. Gauthier-Villars, Paris, 1903.

    MATH  Google Scholar 

  14. F. Boyer and P. Fabrie. Mathematical Tools for the Study of the Incompressible Navier–Stokes Equation and Related Models. Springer, New York, 2013.

    Book  Google Scholar 

  15. G. Caginalp. An analysis of a phase-field model of a free boundary. Arch. Ration. Mech. Anal., 92:205–245, 1986. https://doi.org/10.1007/BF00254827.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. W. Cahn and J. E. Hilliard. Free energy in nonuniform system. I. Interfacial free energy. J. Chem. Phys., 28:258–267, 1958. https://doi.org/10.1063/1.1744102.

  17. E. Casas and K. Kunisch. Optimal control of the two-dimensional evolutionary Navier–Stokes equations with measure valued controls. SIAM J. Control Optim., 59:2223–2246, 2021. https://doi.org/10.1137/20M1351400.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Casas and K. Kunisch. Well-posedness of evolutionary Navier–Stokes equations with forces of low regularity on two dimensional domains. ESAIM Control Optim. Calc. Var., 27:61, 2021. https://doi.org/10.1051/cocv/2021058.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Chella and J. Viñals. Mixing of a two-phase fluid by a cavity flow. Phys. Rev. E, 53:3832–3840, 1996. https://doi.org/10.1103/PhysRevE.53.3832.

    Article  Google Scholar 

  20. L. Cherfils and M. Petcu. On the viscous Cahn–Hilliard–Navier–Stokes equations with dynamic boundary conditions. Commun. Pure Appl. Math., 15:1419–1449, 2016. https://doi.org/10.3934/cpaa.2016.15.1419.

  21. P. Colli, G. Gilardi, and J. Sprekels. A boundary control problem for the viscous Cahn–Hilliard equation with dynamic boundary conditions. Appl. Math. Optim., 73:195–225, 2016. https://doi.org/10.1007/s00245-015-9299-z.

    Article  MathSciNet  MATH  Google Scholar 

  22. L. de Simon. Un’applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine. Rend. Sem. Mat. Univ. Padova, 34:205–223, 1964. Available from: http://www.numdam.org/article/RSMUP_1964__34__205_0.pdf.

  23. R. Denk, M. Hieber, and J. Prüss. \({\cal{R}}\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166, 166:viii+114, 2003. https://doi.org/10.1090/memo/0788.

  24. M. Doi. Dynamics of domains and textures. In Theoretical Challenges in the Dynamics of Complex Fluids, pages 293–314, 1997. https://doi.org/10.1007/978-94-011-5480-2_18.

  25. C. M. Elliott and A. M. Stuart. Viscous Cahn–Hilliard equation II. Analysis. J. Differ. Equation., 128:387–414, 1996. https://doi.org/10.1006/jdeq.1996.0101.

  26. K. J. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations. Springer-Verlag, New York, 2000.

    MATH  Google Scholar 

  27. A. Ern and J.-L. Guermond. Finite Elements III: First-Order and Time-Dependent PDEs. Springer, Cham, 2021.

    Book  Google Scholar 

  28. L. C. Evans. Partial Differential Equations. American Mathematical Society, Providence, 2nd edition, 2010.

    MATH  Google Scholar 

  29. R. Farwig, H. Kozono, and H. Sohr. An \(L^q\)-approach to Stokes and Navier–Stokes equations in general domains. Acta Math., 195:21–53, 2005. Available from: https://www.jstor.org/stable/24902762.

  30. R. Farwig, H. Kozono, and H. Sohr. The Stokes operator in general unbounded domains. Hokkaido Math. J., 38:111–136, 2009. https://doi.org/10.14492/hokmj/1248787007.

  31. R. Farwig and P.F. Riechwald. Very weak solutions to the Navier–Stokes system in general unbounded domains. J. Evol. Equ., 15:253–279, 2015. https://doi.org/10.1007/s00028-014-0258-y.

    Article  MathSciNet  MATH  Google Scholar 

  32. H.O. Fattorini. Infinite Dimensional Optimization and Control Theory. Cambridge University Press, Cambridge, 1999.

    Book  Google Scholar 

  33. S. Frigeri, C. G. Gal, M. Grasselli, and J. Sprekels. Two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems with variable viscosity, degenerate mobility and singular potential. Nonlinearity, 32:678–727, 2019. https://doi.org/10.1088/1361-6544/aaedd0.

    Article  MathSciNet  MATH  Google Scholar 

  34. D. Fujiwara and H. Morimoto. An \(L_r\)-theorem of the Helmholtz decomposition of vector fields. J. Fac. Science Univ. Tokyo Sec., 124:685–700, 1977.

    MATH  Google Scholar 

  35. C. G. Gal and M. Grasselli. Asymptotic behavior of a Cahn–Hilliard–Navier–Stokes system in 2D. Ann. Inst. H. Poincaré Anal. Non Linéaire, 27:401–436, 2010. https://doi.org/10.1016/j.anihpc.2009.11.013.

  36. C. G. Gal, M. Grasselli, and H. Wu. Global weak solutions to a diffuse interface model for incompressible two-phase flows with moving contact lines and different densities. Arch. Ration. Mech. Anal., 234:1–56, 2019. https://doi.org/10.1007/s00205-019-01383-8.

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Geissert, M. Hess, M. Hieber, C. Schwarz, and K. Stavrakidis. Maximal \(L^p\)-\(L^q\)-estimates for the Stokes equation: a short proof of Solonnikov’s theorem. J. Math. Fluid Mech., 12:47–60, 2010. https://doi.org/10.1007/s00021-008-0275-0.

    Article  MathSciNet  MATH  Google Scholar 

  38. Y. Giga. Analyticity of the semigroup generated by the Stokes operator in \(L_r\) spaces. Math. Zeitschrift, 178:297–328, 1981. https://doi.org/10.1007/BF01214869.

    Article  MathSciNet  MATH  Google Scholar 

  39. Y. Giga. Domains of fractional powers of the Stokes operator in \(L^r\) spaces. Arch. Rational Mech. Anal., 89:251–265, 1985. https://doi.org/10.1007/BF00276874.

    Article  MathSciNet  MATH  Google Scholar 

  40. Y. Giga and H. Sohr. Abstract \(L^p\) estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal., 102:72–94, 1991. https://doi.org/10.1016/0022-1236(91)90136-S.

    Article  MathSciNet  MATH  Google Scholar 

  41. D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 1977.

    Book  Google Scholar 

  42. A. Giorgini, A. Miranville, and R. Temam. Uniqueness and regularity for the Navier–Stokes–Cahn–Hilliard system. SIAM J. Math. Anal., 51:2535–2574, 2019. https://doi.org/10.1137/18M1223459.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Giorgini and R. Temam. Weak and strong solutions to the nonhomogeneous incompressible Navier–Stokes–Cahn–Hilliard system. J. Math. Pures Appl., 144:194–249, 2020. https://doi.org/10.1016/j.matpur.2020.08.009.

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Grinfeld and A. Novick-Cohen. The viscous Cahn–Hilliard equation: Morse decomposition and structure of the global attractor. Trans. Amer. Math. Soc., 351:2375–2406, 1999. Available from: https://www.jstor.org/stable/117876.

  45. M. E. Gurtin. Generalized Ginzburg–Landau and Cahn–Hilliard equations based on microforce balance. Physica D, 92:178–192, 1996. https://doi.org/10.1016/0167-2789(95)00173-5.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. E. Gurtin, D. Polignone, and J. Viñals. Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci., 6:815–831, 1996. https://doi.org/10.1142/S0218202596000341.

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Hieber and J. Saal. The Stokes equation in the \(L^p\)-setting: Well-posedness and regularity properties. In Y. Giga and A. Novotný, editors, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pages 117–206. Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-13344-7_3.

  48. E. Hille and R. S. Phillips. Functional Analysis and Semi-groups. American Mathematical Society, Providence, 1957.

    MATH  Google Scholar 

  49. A. Ionescu Tulcea and C. Ionescu Tulcea. Topics in the Theory of Lifting. Springer, Heidelberg, 1969.

  50. H. Kim. Existence and regularity of very weak solutions of the stationary Navier–Stokes equations. Arch. Rational Mech. Anal., 193:117–152, 2009. https://doi.org/10.1007/s00205-008-0168-7.

    Article  MathSciNet  MATH  Google Scholar 

  51. H. Kim. The existence and uniqueness of very weak solutions of the stationary Boussinesq system. Nonlinear Analysis, 75:317–330, 2012. https://doi.org/10.1016/j.na.2011.08.035.

    Article  MathSciNet  MATH  Google Scholar 

  52. A. Lunardi. Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel, 1995.

    Book  Google Scholar 

  53. A. Oberbeck. Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Ann. Phys., 243:271–292, 1879. https://doi.org/10.1002/andp.18792430606.

    Article  MATH  Google Scholar 

  54. A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, 1983.

    Book  Google Scholar 

  55. G. Peralta. Distributed optimal control of the 2D Cahn–Hilliard–Oberbeck–Boussinesq system for nonisothermal viscous two-phase flows. Appl. Math. Optim., 2021. https://doi.org/10.1007/s00245-021-09759-7.

  56. J. Prüss, R. Racke, and S. Zheng. Maximal regularity and asymptotic behavior of solutions for the Cahn–Hilliard equation with dynamic boundary conditions. Ann. di Mat. Pura ed Appl., 185:627–648, 2006. https://doi.org/10.1007/s10231-005-0175-3.

    Article  MathSciNet  MATH  Google Scholar 

  57. J. Prüss and M. Wilke. Maximal \(L_p\)-regularity and long-time behaviour of the non-isothermal Cahn–Hilliard equation with dynamic boundary conditions. In E. Koelink, J. van Neerven, B. de Pagter, G. Sweers, A. Luger, and H. Woracek, editors, Partial Differential Equations and Functional Analysis. Operator Theory: Advances and Applications, volume 168, pages 209–236. Birkhäuser, Basel, 2006. https://doi.org/10.1007/3-7643-7601-5_13.

  58. T. Roubíc̆ek. Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel, 2nd edition, 2013.

  59. D. Serre. Équations de Navier–Stokes stationnaries avec donnes peu reguliéres. Ann. Sci. Norm. Sup. Pisa, 10:543–559, 1983. Available from: http://www.numdam.org/item/ASNSP_1983_4_10_4_543_0/.

  60. J. Simon. Compact sets in \(L^p(0, T; B)\). Ann. Mat. Pur. Appel., 146:65–96, 1987. https://doi.org/10.1007/BF01762360.

    Article  MATH  Google Scholar 

  61. J. Simon. On the existence of the pressure for solutions of the variational Navier–Stokes equations. J. Math. Fluid Mech., 1:225–234, 1999. https://doi.org/10.1007/s000210050010.

    Article  MathSciNet  MATH  Google Scholar 

  62. H. Sohr. The Navier–Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser, Berlin, 2001.

    Book  Google Scholar 

  63. R. Temam. Navier–Stokes Equations, Theory and Numerical Analysis. AMS Chelsea Publishing, Providence, RI, 2001.

  64. P. Tolksdorf. On the\({L^p}\)-theory of the Navier–Stokes Equations on Lipschitz Domains. PhD thesis, Darmstadt University, 2017. Available from: https://tuprints.ulb.tu-darmstadt.de/5960/.

  65. H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Berlin, 1978.

  66. V. Vergara. Maximal regularity and global well-posedness for a phase field system with memory. J. Integral Equ. Appl., 19:93–115, 2007. https://doi.org/10.1216/jiea/1181075424.

    Article  MathSciNet  MATH  Google Scholar 

  67. K. Yosida. Functional Analysis. Springer-Verlag, Heidelberg, sixth edition, 1980.

  68. E. Zeidler. Nonlinear Functional Analysis and its Applications, volume I. Springer-Verlag, New York, 1986.

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the One U.P. Faculty Grant 2019-101374.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Peralta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A space–time version of de Rham’s theorem

We prove a space–time version of the classical de Rham’s theorem. The following proposition is an extension of the one stated in [27, Lemma 72.8], in particular, the case where \(p = r = 2\) and \(k=1\).

Proposition 7.1

Let \(p, r \in (1, \infty )\) and k be a positive integer. Then \({\mathfrak {L}} \in W^{-1, r}(I; \varvec{W}^{-k,p}(\Omega ))\) satisfies

$$\begin{aligned} \langle {\mathfrak {L}}, \varvec{\varrho } \rangle _{ W^{-1, r}(I; \varvec{W}^{-k,p}(\Omega )), W_0^{1, r'}(I; \varvec{W}_0^{k,p'}(\Omega ))} = 0 \qquad \forall \, \varvec{\varrho } \in W_0^{1, r'}(I; \varvec{W}_0^{k,p'}(\Omega ) \cap \varvec{L}_\sigma ^{p'}(\Omega )) \end{aligned}$$

if and only if there exists a unique \({\mathfrak {p}} \in W^{-1,r}(I; {\widehat{W}}^{1-k,p}(\Omega ))\) such that \({\mathfrak {L}} = \nabla {\mathfrak {p}}\) in the distributional sense, that is,

$$\begin{aligned}&\langle {\mathfrak {L}}, \varvec{\rho } \rangle _{ W^{-1, r}(I; \varvec{W}^{-k,p}(\Omega )), W_0^{1, r'}(I; \varvec{W}_0^{k,p'}(\Omega ))} \\&\quad = - \langle {\mathfrak {p}}, \mathrm{div\,}\varvec{\rho } \rangle _{ W^{-1,r}(I; {\widehat{W}}^{1-k,p}(\Omega )), W_0^{1, r'}(I; {\widehat{W}}_0^{k-1, p'}(\Omega ))} \end{aligned}$$

for every \(\varvec{\rho } \in W_0^{1, r'}(I; \varvec{W}_{0}^{k,p'}(\Omega ))\). In this case, there exists a constant \(c > 0\) such that

$$\begin{aligned} \Vert {\mathfrak {p}}\Vert _{W^{-1,r}(I; {\widehat{W}}^{1-k,p}(\Omega ))} \le c \Vert {\mathfrak {L}}\Vert _{W^{-1, r}(I; \varvec{W}^{-k,p}(\Omega ))}. \end{aligned}$$

Proof

We proceed by a duality argument. First, let us note that the linear operator

$$\begin{aligned} \mathrm{div\,}: L^{r'}(I; \varvec{W}_{0}^{k,p'}(\Omega )) \rightarrow L^{r'}(I; {\widehat{W}}_0^{k-1, p'}(\Omega )) \end{aligned}$$

is bounded and surjective, see for instance Lemma II.2.1.1 and Lemma II.2.3.1 in [62] for the time-independent case. We claim that the restriction

$$\begin{aligned} \widetilde{\mathrm{div}} := \mathrm{div\,}: W_0^{1, r'}(I; \varvec{W}_{0}^{k,p'}(\Omega )) \rightarrow W_0^{1, r'}(I; {\widehat{W}}^{k-1,p'}_0(\Omega )) \end{aligned}$$
(7.1)

is also bounded and surjective. It is clear that (7.1) is well-defined, linear and bounded.

Let \(g \in W_0^{1, r'}(I; {\widehat{W}}_0^{k-1,p'}(\Omega )) \hookrightarrow C({\bar{I}}; {\widehat{W}}_0^{k-1,p'}(\Omega )) \hookrightarrow L^{r'}(I; {\widehat{W}}_0^{k-1, p'}(\Omega ))\). Then there is a \(\varvec{v} \in L^{r'}(I; \varvec{W}_{0}^{k,p'}(\Omega ))\) such that \(\mathrm{div\,}\varvec{v} = \partial _t g\) almost everywhere in Q. For each \(t \in [0, T]\), let us define

$$\begin{aligned} \varvec{w}(t) := \frac{T-t}{T}\int \nolimits _0^T \varvec{v}(s) \mathrm{\,d}s - \int \nolimits _t^T \varvec{v}(s) \mathrm{\,d}s. \end{aligned}$$

It is easy to see that \(\varvec{w} \in W_0^{1, r'}(I; \varvec{W}_{0}^{k,p'}(\Omega ))\), and for all \(t \in [0, T]\) we have

$$\begin{aligned}&\widetilde{\mathrm{div}}\, \varvec{w}(t) \\&\quad = \frac{T-t}{T} \int \nolimits _0^T \partial _t g(s) \mathrm{\,d}s- \int \nolimits _t^T \partial _t g(s) \mathrm{\,d}s = g(t) \end{aligned}$$

since \(g(0) = g(T) = 0\) in \({\widehat{W}}_0^{k-1,p'}(\Omega )\). We point out that the insertion of the divergence operator inside the integral is valid since \(\mathrm{div}\) is linear and continuous, see for instance [48, Chap. III, Theorem 3.7.12]. This shows that the map (7.1) is surjective.

It follows from the closed range theorem [67, page 205] that the dual operator \(-\nabla = \widetilde{\mathrm{div}}' : W^{-1, r}(I; {\widehat{W}}^{1-k, p}(\Omega )) \rightarrow W^{-1, r}(I; \varvec{W}^{-k,p}(\Omega ))\) has a trivial kernel and a range \(\text {Ran}(-\nabla )\) that is closed with respect to the topology of \(W^{-1, r}(I; \varvec{W}^{-k,p}(\Omega ))\). As a consequence, the inverse \((- \nabla )^{-1}\) is a well-defined, linear and bounded operator from \(\text {Ran}(-\nabla )\) onto \(W^{-1, r}(I; {\widehat{W}}^{1-k,p}(\Omega ))\). Thus, if \({\mathfrak {L}} \in W^{-1, r}(I; \varvec{W}^{-k,p}(\Omega ))\) vanishes on \(W_0^{1, r'}(I; \varvec{W}_0^{k,p'}(\Omega ) \cap \varvec{L}_\sigma ^{p'}(\Omega )) = \mathrm{Ker}(\widetilde{\mathrm{div}})\), then \({\mathfrak {L}} \in \mathrm{Ker}(\widetilde{\mathrm{div}})^\perp = \text {Ran}(-\nabla )\). Therefore, we may take \({\mathfrak {p}} = - (-\nabla )^{-1}{\mathfrak {L}} = \nabla ^{-1}{\mathfrak {L}}\in W^{-1, r}(I; {\widehat{W}}^{1-k,p}(\Omega ))\) with norm

$$\begin{aligned}&\Vert {\mathfrak {p}}\Vert _{W^{-1, r}(I; {\widehat{W}}^{1-k,p}(\Omega ))} \le \Vert (-\nabla )^{-1}\Vert _{{\mathcal {L}}(\text {Ran}(-\nabla ), W^{-1, r}(I; {\widehat{W}}^{1-k,p}(\Omega )))} \Vert {\mathfrak {L}}\Vert _{W^{-1, r}(I; \varvec{W}^{-k,p}(\Omega ))}. \end{aligned}$$

The converse of the first statement in the proposition is trivial. \(\square \)

1.2 Analyticity of the semigroup for the linearized system

In the following, we prove that the linear operator \(-\varvec{{\mathcal {A}}}\) generates a strongly continuous analytic semigroup on \(\varvec{{\mathcal {H}}}_\omega \), where \(\varvec{{\mathcal {A}}}\) is defined by (3.30). The sesqui-linear form associated with \(\varvec{{\mathcal {A}}}\) is given by

$$\begin{aligned}&(\varvec{{\mathcal {A}}}(\phi , \gamma , \varvec{u}), (\psi , \eta , \varvec{v}))_{\varvec{{\mathcal {H}}}_\omega } =\varvec{{\mathfrak {a}}}((\phi , \gamma , \varvec{u}), (\psi , \eta , \varvec{v})) \end{aligned}$$

where \(\varvec{{\mathfrak {a}}} = \varvec{{\mathfrak {a}}}_1 + \varvec{{\mathfrak {a}}}_2\) and

$$\begin{aligned} \varvec{{\mathfrak {a}}}_1((\phi , \gamma , \varvec{u}), (\psi , \eta , \varvec{v}))&:= \int \nolimits _\Omega \{\omega m^2\tau \epsilon \nabla \Delta \phi \cdot \nabla \Delta {\overline{\psi }} + \kappa \nabla \gamma \cdot \nabla {\overline{\eta }} + \nu \nabla \varvec{u} : \nabla \overline{\varvec{v}} \} \mathrm {\,d}x \\ \varvec{{\mathfrak {a}}}_2((\phi , \gamma , \varvec{u}), (\psi , \eta , \varvec{v}))&:= - \int \nolimits _\Omega \omega m[(\beta _1 - l_{\mathrm {c}} l_{\mathrm {h}})\Delta \phi - l_{\mathrm {c}}\Delta \gamma ] (m\tau \Delta {\overline{\psi }} - {\overline{\psi }}) \mathrm {\,d}x \\&\quad - \int \nolimits _{\Omega } \{ (\kappa l_{\mathrm {h}} \Delta \phi ) {\overline{\eta }} + (\alpha \varvec{g} \cdot \varvec{u}) {\overline{\eta }} + [(\alpha _1 + \alpha _2 l_{\mathrm {h}})\phi + \alpha _2 \gamma ] \varvec{g} \cdot \overline{\varvec{v}}\} \mathrm {\,d}x. \end{aligned}$$

Given \(\beta \in (0, \pi )\), we denote the sector \(\Sigma _\beta := \{\zeta \in {\mathbb {C}} \setminus \{0\} : |\text {arg}\, \zeta | < \pi - \beta \}\). First, we prove the following elementary inequality.

Lemma 7.2

For each \(\beta \in (0, \pi )\), there exists \(\tau _\beta > 0\) such that for every \(a, b \ge 0\) and \(\zeta \in \Sigma _\beta \) there holds \(|a\zeta + b| \ge \tau _\beta (a|\zeta | + b)\).

Proof

Suppose \(a, b > 0\). Setting \(z = a\zeta /b\), it suffices to show that \(|z + 1| \ge \tau _\beta (|z| + 1)\) for every \(z \in \Sigma _\beta \). Write z in its polar form \(z = re^{i\vartheta }\) where \(|\vartheta | < \pi - \beta \) and \(r > 0\). Let \(\delta _\beta := \cos (\pi - \beta ) > -1\). Then

$$\begin{aligned} \frac{|z + 1|^2}{(|z| + 1)^2} = \frac{r^2 + 2r \cos \vartheta + 1}{(r + 1)^2} \ge 1 - \frac{2(1-\delta _\beta )r}{(r+1)^2} \ge 1 - \frac{1-\delta _\beta }{2} =: c_\beta \end{aligned}$$

for every \(r > 0\), where \(c_\beta > 0\). We may then take \(\tau _\beta = \min \{1, c_\beta ^{1/2}\}\), and this clearly covers the case when \(a = 0\) or \(b = 0\). \(\square \)

Proposition 7.3

For small enough \(\omega > 0\), the linear operator \(-\varvec{{\mathcal {A}}} : D(\varvec{{\mathcal {A}}}) \subset \varvec{{\mathcal {H}}}_\omega \rightarrow \varvec{{\mathcal {H}}}_\omega \) generates an analytic \(C_0\)-semigroup on \(\varvec{{\mathcal {H}}}_\omega \).

Proof

It is clear that \(\varvec{{\mathcal {A}}}\) is a closed and densely defined linear operator. Let \(\delta > 0\) be a constant to be chosen later. Applying integration by parts and Young’s inequality, it is not hard to see that for each \((\phi , \gamma , \varvec{u}) \in X^{3,2}(\Omega ) \times W_0^{1,2}(\Omega ) \times \varvec{X}_{\sigma }^{1,2}(\Omega )\), we have

$$\begin{aligned} \varvec{{\mathfrak {a}}}_1((\phi , \gamma , \varvec{u}), (\phi , \gamma , \varvec{u}))&\ge c \{\omega \Vert \phi \Vert ^2_{X^{3,2}(\Omega )} + \Vert \gamma \Vert ^2_{W_0^{1,2}(\Omega )} + \Vert \varvec{u}\Vert ^2_{\varvec{X}_{\sigma }^{1,2}(\Omega )} \}\\ |\varvec{{\mathfrak {a}}}_2((\phi , \gamma , \varvec{u}), (\phi , \gamma , \varvec{u}))|&\le c_{\omega }\Vert (\phi , \gamma , \varvec{u})\Vert ^2_{\varvec{{\mathcal {H}}}_\omega } + \omega \{\delta \Vert \phi \Vert _{X^{3,2}(\Omega )}^2 + c_\delta \Vert \gamma \Vert ^2_{W_0^{1,2}(\Omega )}\} \end{aligned}$$

where \(c = \min \{m^2\tau \epsilon , \kappa , \nu \} > 0\) and \(c_{\omega }, c_\delta > 0\) are independent of \((\phi , \gamma , \varvec{u})\). Let \(\beta \in (0, \pi )\) be fixed. If \(\varpi \ge 0\) and \(\zeta \in \Sigma _\beta \), then by invoking the estimate in the previous lemma, we obtain

$$\begin{aligned}&|(\zeta + \varpi )\Vert (\phi , \gamma , \varvec{u})\Vert ^2_{\varvec{{\mathcal {H}}}_\omega } + \varvec{{\mathfrak {a}}}((\phi , \gamma , \varvec{u}), (\phi , \gamma , \varvec{u})) | \\&\quad \ge |(\zeta + \varpi )\Vert (\phi , \gamma , \varvec{u})\Vert ^2_{\varvec{{\mathcal {H}}}_\omega } + \varvec{{\mathfrak {a}}}_1((\phi , \gamma , \varvec{u}), (\phi , \gamma , \varvec{u})) | \\&\qquad - |\varvec{{\mathfrak {a}}}_2((\phi , \gamma , \varvec{u}), (\phi , \gamma , \varvec{u}))| \\&\quad \ge \tau _\beta \{(|\zeta | + \varpi )\Vert (\phi , \gamma , \varvec{u})\Vert ^2_{\varvec{{\mathcal {H}}}_\omega } + \varvec{{\mathfrak {a}}}_1((\phi , \gamma , \varvec{u}), (\phi , \gamma , \varvec{u}))\}\\&\qquad - |\varvec{{\mathfrak {a}}}_2((\phi , \gamma , \varvec{u}), (\phi , \gamma , \varvec{u}))| \\&\quad \ge \{\tau _\beta (|\zeta | + \varpi ) - c_{\omega }\}\Vert (\phi , \gamma , \varvec{u})\Vert ^2_{\varvec{{\mathcal {H}}}_\omega } + c_{\omega ,\delta ,\beta } \Vert (\phi , \gamma , \varvec{u})\Vert ^2_{ X^{3,2}(\Omega ) \times W_0^{1,2}(\Omega ) \times \varvec{X}_{\sigma }^{1,2}(\Omega )} \end{aligned}$$

where \(c_{\omega , \delta ,\beta } = \min \{\omega (c \tau _\beta - \delta ), c\tau _\beta - \omega c_\delta \}\). Taking \(0< \delta < c \tau _\beta \), \(0< \omega < c\tau _\beta / c_\delta \), and \(\varpi \ge c_{\omega }/\tau _\beta > 0\), we have \(c_{\omega , \delta ,\beta } > 0\) and

$$\begin{aligned}&|(\zeta + \varpi )\Vert (\phi , \gamma , \varvec{u})\Vert ^2_{\varvec{{\mathcal {H}}}_\omega } + \varvec{{\mathfrak {a}}}((\phi , \gamma , \varvec{u}), (\phi , \gamma , \varvec{u}))| \nonumber \\&\quad \ge \tau _\beta |\zeta |\Vert (\phi , \gamma , \varvec{u})\Vert ^2_{\varvec{{\mathcal {H}}}_\omega } + c_{\omega , \delta ,\beta } \Vert (\phi , \gamma , \varvec{u})\Vert ^2_{ X^{3,2}(\Omega ) \times W_0^{1,2}(\Omega ) \times \varvec{X}_{\sigma }^{1,2}(\Omega )}. \end{aligned}$$
(7.2)

Thus, the sesqui-linear form \((\zeta + \varpi )(\cdot , \cdot )_{\varvec{{\mathcal {H}}}_\omega } + \varvec{{\mathfrak {a}}}\) is bounded and coercive on \(X^{3,2}(\Omega ) \times W_0^{1,2}(\Omega ) \times \varvec{X}_{\sigma }^{1,2}(\Omega )\).

For each \((\sigma , h, \varvec{f}) \in X^{2,2}(\Omega ) \times L^2(\Omega ) \times \varvec{L}_\sigma ^2(\Omega )\) the following variational equation for all \((\psi ,\eta , \varvec{v}) \in X^{3,2}(\Omega ) \times W_0^{1,2}(\Omega ) \times \varvec{X}_{\sigma }^{1,2}(\Omega )\)

$$\begin{aligned}&(\zeta + \varpi )((\phi , \gamma , \varvec{u}), (\psi , \eta , \varvec{v}))_{\varvec{{\mathcal {H}}}_\omega } + \varvec{{\mathfrak {a}}}((\phi , \gamma , \varvec{u}), (\psi , \eta , \varvec{v})) \nonumber \\&\quad = ((\sigma , h, \varvec{f}), (\psi , \eta , \varvec{v}))_{\varvec{{\mathcal {H}}}_\omega } \end{aligned}$$
(7.3)

admits a unique solution \((\phi , \gamma , \varvec{u}) \in X^{3,2}(\Omega ) \times W_0^{1,2}(\Omega ) \times \varvec{X}_{\sigma }^{1,2}(\Omega )\) in virtue of the Lax–Milgram lemma. Moreover, it follows from the definition of \(\varvec{{\mathcal {A}}}\) that \((\phi , \gamma , \varvec{u})\) is a weak solution to the following system of boundary value problems:

By classical elliptic regularity theory for the Poisson and stationary Stokes equations, we have \(\gamma \in X^{2,2}(\Omega )\) and \(\varvec{u} \in \varvec{X}_\sigma ^{2,2}(\Omega )\). Thus, we also have \(\phi \in X^{4,2}(\Omega )\) for the solution of the above bi-Laplace equation since \(\sigma - m\tau \Delta \sigma + ml_{\mathrm {c}} \Delta \gamma \in L^2(\Omega )\). Consequently, it holds that \((\phi , \gamma , \varvec{u}) \in D(\varvec{{\mathcal {A}}})\).

The variational equation (7.3) is equivalent to \([\zeta \varvec{I} + (\varpi \varvec{I} + \varvec{{\mathcal {A}}})](\phi , \gamma , \varvec{u}) = (\sigma , h, \varvec{f})\), and moreover, from (7.2) and the Cauchy–Schwarz inequality, one has

$$\begin{aligned} \tau _\beta |\zeta |\Vert (\phi , \gamma , \varvec{u})\Vert _{\varvec{{\mathcal {H}}}_\omega } \le \Vert (\sigma , h , \varvec{f})\Vert _{\varvec{{\mathcal {H}}}_\omega }. \end{aligned}$$
(7.4)

Hence, the sector \(\Sigma _\beta \) lies in the resolvent set of \(-(\varpi \varvec{I} + \varvec{{\mathcal {A}}})\), and for every \(\zeta \in \Sigma _\beta \) the resolvent estimate \(\Vert [\zeta \varvec{I} + (\varpi \varvec{I} + \varvec{{\mathcal {A}}})]^{-1}\Vert _{{\mathcal {L}}(\varvec{{\mathcal {H}}}_\omega )} \le \tau _\beta ^{-1}/|\zeta |\) holds due to (7.4). These show that \(-(\varpi \varvec{I} + \varvec{{\mathcal {A}}})\) is sectorial, and hence, it generates an analytic \(C_0\)-semigroup on \(\varvec{{\mathcal {H}}}_\omega \) by [26, Theorem 4.6]. Thanks to the bounded perturbation theorem in [54, Chapter 3, Corollary 2.2], we conclude that \(-\varvec{{\mathcal {A}}} = -(\varpi \varvec{I} + \varvec{{\mathcal {A}}}) + \varpi \varvec{I}\) is also a generator of an analytic \(C_0\)-semigroup on \(\varvec{{\mathcal {H}}}_\omega \). The proposition is now established.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peralta, G. Weak and very weak solutions to the viscous Cahn–Hilliard–Oberbeck–Boussinesq phase-field system on two-dimensional bounded domains. J. Evol. Equ. 22, 12 (2022). https://doi.org/10.1007/s00028-022-00765-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-022-00765-y

Keywords

Mathematics Subject Classification

Navigation