Skip to main content
Log in

Global Weak Solutions to a Diffuse Interface Model for Incompressible Two-Phase Flows with Moving Contact Lines and Different Densities

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we analyze a general diffuse interface model for incompressible two-phase flows with unmatched densities in a smooth bounded domain \(\Omega \subset {\mathbb {R}}^d\) (\(d=2,3\)). This model describes the evolution of free interfaces in contact with the solid boundary, namely the moving contact lines. The corresponding evolution system consists of a nonhomogeneous Navier–Stokes equation for the (volume) averaged fluid velocity \({\mathbf {v}}\) that is nonlinearly coupled with a convective Cahn–Hilliard equation for the order parameter \(\varphi \). Due to the nontrivial boundary dynamics, the fluid velocity satisfies a generalized Navier boundary condition that accounts for the velocity slippage and uncompensated Young stresses at the solid boundary, while the order parameter fulfils a dynamic boundary condition with surface convection. We prove the existence of a global weak solution for arbitrary initial data in both two and three dimensions. The proof relies on a combination of suitable approximations and regularizations of the original system together with a novel time-implicit discretization scheme based on the energy dissipation law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194, 463–506, 2009

    Article  MathSciNet  Google Scholar 

  2. Abels, H.: Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities. Commun. Math. Phys. 289, 45–73, 2009

    Article  ADS  MathSciNet  Google Scholar 

  3. Abels, H.: Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow. SIAM J. Math. Anal. 44, 316–340, 2012

    Article  MathSciNet  Google Scholar 

  4. Abels, H., Breit, D.: Weak solutions for a non-Newtonian diffuse interface model with different densities. Nonlinearity 29, 3426–3453, 2016

    Article  ADS  MathSciNet  Google Scholar 

  5. Abels, H., Depner, D., Garcke, H.: Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities. J. Math. Fluid Mech. 15, 453–480, 2013

    Article  ADS  MathSciNet  Google Scholar 

  6. Abels, H., Depner, D., Garcke, H.: On an incompressible Navier–Stokes/Cahn–Hilliard system with degenerate mobility. Ann. Inst. H. Poincaré Anal. Nonlinéaire 30, 1175–1190, 2013

    Article  ADS  MathSciNet  Google Scholar 

  7. Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22, 1150013, 2012

    Article  MathSciNet  Google Scholar 

  8. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annual Review of Fluid Mechanics, vol. 30, pp. 139–165. Annual Reviews, Palo Alto, CA, 1998

  9. Bao, K., Shi, Y., Sun, S., Wang, X.-P.: A finite element method for the numerical solution of the coupled Cahn–Hilliard and Navier–Stokes system for moving contact line problems. J. Comput. Phys. 231, 8083–8099, 2012

    Article  ADS  MathSciNet  Google Scholar 

  10. Berti, A., Berti, V., Grandi, D.: Well-posedness of an isothermal diffusive model for binary mixtures of incompressible fluids. Nonlinearity 24, 3143–3164, 2011

    Article  ADS  MathSciNet  Google Scholar 

  11. Blesgen, T.: A generalization of the Navier–Stokes equation to two-phase flows. J. Phys. D (Appl. Phys.) 32, 1119–1123, 1999

    Article  ADS  Google Scholar 

  12. Bonart, H., Kahle, C., Repke, J.U.: Energy stable simulation of moving contact line problems using a thermodynamically consistent Cahn–Hilliard Navier–Stokes model, 2018. arXiv:1809.06689v2

  13. Bonn, D., Eggers, J., Indekeu, J., Meunier, J., Rolley, E.: Wetting and spreading. Rev. Mod. Phys. 81, 739–805, 2009

    Article  ADS  Google Scholar 

  14. Bosia, S., Gatti, S.: Pullback exponential attractor for a Cahn–Hilliard–Navier–Stokes system in 2D. Dyn. Partial Differ. Equ. 11, 1–38, 2014

    Article  MathSciNet  Google Scholar 

  15. Boyer, F.: Mathematical study of multi-phase flow under shear through order parameter formulation. Asymp. Anal. 20, 175–212, 1999

    MathSciNet  MATH  Google Scholar 

  16. Boyer, F.: Nonhomogenous Cahn–Hilliard fluids. Ann. Inst. H. Poincaré Anal. Nonlinéaire 18, 225–259, 2001

    Article  ADS  Google Scholar 

  17. Boyer, F.: A theoretical and numerical model for the study of incompressible model flows. Comput. Fluids 31, 41–68, 2002

    Article  Google Scholar 

  18. Cao, C.-S., Gal, C.G.: Global solutions for the 2D NS-CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility. Nonlinearity 25, 3211–3234, 2012

    Article  MathSciNet  Google Scholar 

  19. Chen, X.-F., Wang, X.-P., Xu, X.-M.: Analysis of the Cahn–Hilliard equation with a relaxation boundary condition modeling the contact angle dynamics. Arch. Ration. Mech. Anal. 213, 1–24, 2014

    Article  MathSciNet  Google Scholar 

  20. Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications 49. American Mathematical Society, Providence, RI 2002

    Google Scholar 

  21. Cherfils, L., Miranville, A., Zelik, S.: The Cahn–Hilliard equation with logarithmic potentials. Milan J. Math. 79, 561–596, 2011

    Article  MathSciNet  Google Scholar 

  22. Cherfils, L., Petcu, M.: Energy stable numerical scheme for the viscous Cahn–Hilliard–Navier–Stokes equations with moving contact lines. Numer. Methods Partial Differ. Equ., 2019, to appear. https://doi.org/10.1002/num.22341

  23. Colli, P., Gilardi, G., Sprekels, J.: On the Cahn–Hilliard equation with dynamic boundary conditions and a dominating boundary potential. J. Math. Anal. Appl. 419, 972–994, 2014

    Article  MathSciNet  Google Scholar 

  24. de Gennes, P.G., Brochard-Wyart, F., Quere, D.: Capillarity and Wetting Phenomena: Drops, Pearls, Bubbles, Waves. Springer, New York 2004

    Book  Google Scholar 

  25. Dehsara, M., Fu, H., Mesarović, S.D., Sekulić, D.P., Krivilyov, M.: (In)compressibility and parameter identification in phase field models for capillary flows. Theor. Appl. Mech. 44, 189–214, 2017

    Article  ADS  Google Scholar 

  26. Ding, H., Spelt, P.D.M., Shu, C.: Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 22, 2078–2095, 2007

    Article  ADS  Google Scholar 

  27. Dussan, E.B.: On the spreading of liquids on solid surfaces: static and dynamic contact lines. Ann. Rev. Fluid Mech. 11, 371–400, 1979

    Article  ADS  Google Scholar 

  28. Dussan, E.B., Davis, S.H.: On the motion of a fluid–fluid interface along a solid surface. J. Fluid Mech. 65, 71–95, 1974

    Article  ADS  Google Scholar 

  29. Frigeri, S.: Global existence of weak solutions for a nonlocal model for two-phase flows of incompressible fluids with unmatched densities. Math. Models Methods Appl. Sci. 26, 1955–1993, 2016

    Article  MathSciNet  Google Scholar 

  30. Gal, C.G.: The role of surface diffusion in dynamic boundary conditions: where do we stand? Milan J. Math. 83, 237–278, 2015

    Article  MathSciNet  Google Scholar 

  31. Gal, C.G., Grasselli, M.: Asymptotic behavior of a Cahn–Hilliard–Navier–Stokes system in 2D. Ann. Inst. H. Poincaré Anal. Nonlinéaire 27, 401–436, 2010

    Article  ADS  MathSciNet  Google Scholar 

  32. Gal, C.G., Grasselli, M.: Instability of two-phase flows: a lower bound on the dimension of the global attractor of the Cahn–Hilliard–Navier–Stokes system. Physica D 240, 629–635, 2011

    Article  ADS  MathSciNet  Google Scholar 

  33. Gal, C.G., Grasselli, M.: Trajectory and global attractors for binary mixtures fluid flows in 3D. Chin. Ann. Math. Ser. B 31, 655–678, 2010

    Article  MathSciNet  Google Scholar 

  34. Gal, C.G., Grasselli, M., Miranville, A.: Cahn–Hilliard–Navier–Stokes systems with moving contact lines. Calc. Var. Partial Differ. Equ. 55(50), 47, 2016

    MathSciNet  MATH  Google Scholar 

  35. Gal, C.G., Medjo, T.T.: Regularized family of models for incompressible Cahn–Hilliard two-phase flows. Nonlinear Anal. Real World Appl. 23, 94–122, 2015

    Article  MathSciNet  Google Scholar 

  36. Gao, M., Wang, X.-P.: A gradient stable scheme for a phase field model for the moving contact line problem. J. Comput. Phys. 231, 1372–1386, 2012

    Article  ADS  MathSciNet  Google Scholar 

  37. Gilardi, G., Miranville, A., Schimperna, G.: On the Cahn–Hilliard equation with irregular potentials and dynamic boundary conditions. Commun. Pure Appl. Anal. 8, 881–912, 2009

    Article  MathSciNet  Google Scholar 

  38. Giorgini, A., Miranville, A., Temam, R.: Uniqueness and regularity for the Navier–Stokes–Cahn–Hilliard system, preprint, 2018. arXiv:1810.11554

  39. Glasner, K.B.: Variational models for moving contact lines and the quasi-static approximation. Eur. J. Appl. Math. 16, 1–28, 2005

    Article  MathSciNet  Google Scholar 

  40. Gurtin, M.E., Polignone, D., Viñals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6, 815–831, 1996

    Article  MathSciNet  Google Scholar 

  41. Heida, M.: On the derivation of thermodynamically consistent boundary conditions for the Cahn–Hilliard–Navier–Stokes system. Int. J. Eng. Sci. 62, 126–156, 2013

    Article  MathSciNet  Google Scholar 

  42. Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479, 1977

    Article  ADS  Google Scholar 

  43. Huh, C., Scriven, L.E.: Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85–101, 1971

    Article  ADS  Google Scholar 

  44. Jacqmin, D.: Calculation of two-phase Navier–Stokes flows using phase-field modelling. J. Comput. Phys. 155, 96–127, 1999

    Article  ADS  MathSciNet  Google Scholar 

  45. Jacqmin, D.: Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 57–88, 2000

    Article  ADS  MathSciNet  Google Scholar 

  46. Lam, K.-F., Wu, H.: Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis. Eur. J. Appl. Math. 29, 595–644, 2018

    Article  MathSciNet  Google Scholar 

  47. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris 1969

    MATH  Google Scholar 

  48. Liu, C., Wu, H.: An energetic variational approach for the Cahn-Hilliard equation with dynamic boundary condition: model derivation and mathematical analysis. Arch. Ration. Mech. Anal. 233, 167–247, 2019. https://doi.org/10.1007/s00205-019-01356-x

  49. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454, 2617–2654, 1998

    Article  MathSciNet  Google Scholar 

  50. Maxwell, D.: Initial Data for Black Holes and Rough Spacetimes, PhD thesis, University of Washington, 2004

  51. Miranville, A., Zelik, S.: Exponential attractors for the Cahn–Hilliard equation with dynamical boundary conditions. Math. Methods Appl. Sci. 28, 709–735, 2005

    Article  ADS  MathSciNet  Google Scholar 

  52. Miranville, A., Zelik, S.: The Cahn–Hilliard equation with singular potentials and dynamic boundary conditions. Discrete Contin. Dyn. Syst. 28, 275–310, 2010

    Article  MathSciNet  Google Scholar 

  53. Nochetto, R.H., Salgado, A.J., Walker, S.W.: A diffuse interface model for electrowetting with moving contact lines. Math. Models Methods Appl. Sci. 24, 67–111, 2014

    Article  MathSciNet  Google Scholar 

  54. Onsager, L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426, 1931

    Article  ADS  Google Scholar 

  55. Onsager, L.: Reciprocal relations in irreversible processes II. Phys. Rev. 38, 2265–2279, 1931

    Article  ADS  Google Scholar 

  56. Qian, T.-Z., Wang, X.-P., Sheng, P.: Molecular scale contact line hydrodynamics of immiscible flows. Phys. Rev. E 68, 016306, 2003

    Article  ADS  Google Scholar 

  57. Qian, T.-Z., Wang, X.-P., Sheng, P.: Generalized Navier boundary condition for the moving contact line. Commun. Math. Sci. 1, 333–341, 2003

    Article  MathSciNet  Google Scholar 

  58. Qian, T.-Z., Wang, X.-P., Sheng, P.: A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564, 333–360, 2006

    Article  ADS  MathSciNet  Google Scholar 

  59. Ren, W.-Q., E, W.-N.: Boundary conditions for moving contact line problem. Phys. Fluids 19, 022101, 2007

  60. Ren, W.-Q., E, W.-N.: Derivation of continuum models for the moving contact line problem based on thermodynamic principles. Commun. Math. Sci. 9, 597–606, 2011

  61. Ren, Weiqing, Weinan, E.: Continuum models for the contact line problem. Phys. Fluids 22, 102103, 2010

    Article  ADS  Google Scholar 

  62. Ruiz, R., Nelson, D.R.: Turbulence in binary fluid mixtures. Phys. Rev. A 23, 3224–3246, 1981

    Article  ADS  Google Scholar 

  63. Salgado, A.J.: A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines. ESAIM Math. Model. Numer. Anal. 47, 743–769, 2013

    Article  MathSciNet  Google Scholar 

  64. Seppecher, P.: Moving contact lines in the Cahn–Hilliard theory. Int. J. Eng. Sci. 34, 977–992, 1996

    Article  Google Scholar 

  65. Siggia, E.D.: Late stages of spinodal decomposition in binary mixtures. Phys. Rev. A 20, 595–605, 1979

    Article  ADS  Google Scholar 

  66. Simon, J.: Compact sets in the space \(L^{p}\left(0,T;B\right)\). Ann. Mat. Pura Appl. (4) 146, 65–96, 1987

    Article  MathSciNet  Google Scholar 

  67. Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68. Springer, New York 1997

    Book  Google Scholar 

  68. Wang, X.-P., Qian, T.-Z., Sheng, P.: Moving contact line on chemically patterned surfaces. J. Fluid Mech. 605, 59–78, 2008

    Article  ADS  MathSciNet  Google Scholar 

  69. Wang, X.-P., Wang, Y.-G.: The sharp interface limit of a phase field model for moving contact line problem. Methods Appl. Anal. 14, 285–292, 2007

    MathSciNet  Google Scholar 

  70. Wu, H.: Convergence to equilibrium for the semilinear parabolic equation with dynamical boundary condition. Adv. Math. Sci. Appl. 17, 67–88, 2007

    MathSciNet  MATH  Google Scholar 

  71. Wu, H., Zheng, S.: Convergence to equilibrium for the Cahn–Hilliard equation with dynamic boundary condition. J. Differ. Equ. 204, 511–531, 2004

    Article  ADS  MathSciNet  Google Scholar 

  72. Xu, X.-M., Di, Y.-N., Yu, H.-J.: Sharp-interface limits of a phase-field model with a generalized Navier slip boundary condition for moving contact lines. J. Fluid Mech. 849, 805–833, 2018

    Article  ADS  MathSciNet  Google Scholar 

  73. Yue, P.-T., Zhou, C., Feng, J.J.: Sharp-interface limit of the Cahn–Hilliard model for moving contact lines. J. Fluid Mech. 645, 279–294, 2010

    Article  ADS  MathSciNet  Google Scholar 

  74. Zeidler, E.: Nonlinear Functional Analysis and its Applications I. Springer, New York 1992

    Google Scholar 

  75. Zhao, L.-Y., Wu, H., Huang, H.-Y.: Convergence to equilibrium for a phase-field model for the mixture of two incompressible fluids. Commun. Math. Sci. 7, 939–962, 2009

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their careful reading of an initial version of the manuscript and for several helpful comments that allowed us to improve the paper. This work was commenced in May 2017 when the first two authors were visiting Key Laboratory of Mathematics for Nonlinear Science (Fudan University), Ministry of Education and School of Mathematical Sciences at Fudan University, whose hospitality and support is gratefully acknowledged. M. Grasselli is a member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). H. Wu was partially supported by NNSFC Grant No. 11631011 and the Shanghai Center for Mathematical Sciences at Fudan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by F. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gal, C.G., Grasselli, M. & Wu, H. Global Weak Solutions to a Diffuse Interface Model for Incompressible Two-Phase Flows with Moving Contact Lines and Different Densities. Arch Rational Mech Anal 234, 1–56 (2019). https://doi.org/10.1007/s00205-019-01383-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-019-01383-8

Navigation