Skip to main content
Log in

Nonexistence results for parabolic equations involving the \({\varvec{p}}\)-Laplacian and Hardy–Leray-type inequalities on Riemannian manifolds

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

The main goal of this paper is twofold. The first one is to investigate the nonexistence of positive solutions for the following nonlinear parabolic partial differential equation on a noncompact Riemannian manifold M,

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{\partial u}{\partial t}=\varDelta _{p,g} u+V(x)u^{p-1}+ \lambda u^q &{} \text {in}\quad \varOmega \times (0, T ) ,\\ u(x,0)=u_{0}(x)\ge 0 &{} \text {in} \quad \varOmega ,\\ u(x,t)=0 &{} \text {on } \partial \varOmega \times (0,T), \end{array}\right. } \end{aligned}$$

where \(1<p<2\), \(V\in L_ {\text {loc}}^1(\varOmega ) \), \(q>0 \), \(\lambda \in {\mathbb {R}}\), \(\varOmega \) is bounded and has a smooth boundary in M and \(\varDelta _{p,g}\) is the p-Laplacian on M. The second one is to obtain Hardy- and Leray-type inequalities with remainder terms on a Riemannian manifold M that provide us concrete potentials to use in the partial differential equation we are interested in. In particular, we obtain explicit (mostly sharp) constants for these inequalities on the hyperbolic space \({\mathbb {H}}^n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi, M. Ramaswamy and N. Chaudhuri, An improved Hardy-Sobolev inequality and its applications, Proc. Amer. Math. Soc., 130 (2001), 489–505.

    Article  MathSciNet  Google Scholar 

  2. Adimurthi and K. Sandeep, Existence and non-existence of the first eigenvalue of the perturbed Hardy-Sobolev operator, Proc. Roy. Soc. Edinburgh Sect. A., 132 (2002), 1021–1043.

    Article  MathSciNet  Google Scholar 

  3. J. A. Aguilar Crespo and I. Peral Alonso, Global behavior of the Cauchy problem for some critical nonlinear parabolic equations, SIAM J. Math. Anal, 31 (2000), 1270–1294.

    Article  MathSciNet  Google Scholar 

  4. J. Garcia Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Diff. Equations, 144 (1998), 441–476.

    Article  MathSciNet  Google Scholar 

  5. P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc., 284 (1984), 121–139.

    Article  MathSciNet  Google Scholar 

  6. E. Berchio, L. D’Ambrosio, D. Ganguly and G. Grillo Improved\(L^p\)-Poincaré inequalities on the hyperbolic space, Nonlinear Analysis, 157 (2017), 146–166.

    Article  MathSciNet  Google Scholar 

  7. H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complutense Madrid, 10 (1997), 443–469.

    MathSciNet  MATH  Google Scholar 

  8. X. Cabré and Y. Martel, Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier, C.R. Acad.Sci. Paris, 329 (1999), 973–978.

    Article  MathSciNet  Google Scholar 

  9. G. Carron, Inégalités de Hardy sur les variétés riemanniennes non-compactes, J. Math. Pures Appl., 76 (1997), 883–891.

    Article  MathSciNet  Google Scholar 

  10. I. Chavel, Riemannian geometry, volume 98 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2006. A modern introduction.

  11. L. D’Ambrosio, S. Dipierro, Hardy inequalities on Riemannian manifolds and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 449–475.

    Article  MathSciNet  Google Scholar 

  12. K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: The sequel, J. Math. Anal. Appl., 243 (2000), 85–126.

    Article  MathSciNet  Google Scholar 

  13. L. Dupaigne, A nonlinear elliptic PDE with the inverse-square potential, J. Anal. Math., 86 (2002), 359–398.

    Article  MathSciNet  Google Scholar 

  14. H. Fujita, On the blowing up of solutions of the Cauchy problem for\(\frac{\partial u}{\partial t}= \Delta u +u^{1+\alpha }\), J. Fac. Sci, Univ. Tokyo, Sect. 1A, Math, 13 (1966), 109–124.

    Google Scholar 

  15. S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, 3rd ed., Springer-Verlag, Berlin, 2004.

    Book  Google Scholar 

  16. J. A. Goldstein and Q. S. Zhang, On a degenerate heat equation with a singular potential. J. Funct. Anal., 186 (2001), 342–359.

    Article  MathSciNet  Google Scholar 

  17. J. A. Goldstein and Q. S. Zhang, Linear parabolic equations with strong singular potentials. Trans. Amer. Math. Soc., 355 (2003), 197–211.

    Article  MathSciNet  Google Scholar 

  18. J. A. Goldstein and I. Kombe, Instantaneous blow up, Journal of Contemporary Mathematics, 327 (2003), 141–149.

    Article  MathSciNet  Google Scholar 

  19. G.R. Goldstein, J. A. Goldstein and I. Kombe, Nonlinear parabolic equations with singular coefficient and critical exponent, Appl. Anal., 84 (2005), 571-583.

    Article  MathSciNet  Google Scholar 

  20. K. Hayakawa, On the nonexistence of global solutions of some semilinear parabolic equations, Proc. Japan Acad., 49 (1973), 503–525.

    MathSciNet  MATH  Google Scholar 

  21. E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, CIMS Lecture Notes, Courant Institute of Mathematical Sciences, Vol. 5, 1999. Second edition published by the American Mathematical Society, 2000.

  22. I. Kombe, The linear heat equation with a highly singular, oscillating potential, Proc. Amer. Math. Soc., 132 (2004), 2683–2691.

    Article  MathSciNet  Google Scholar 

  23. I. Kombe and M. Özaydin, Improved Hardy and Rellich inequalities on Riemannian manifolds, Trans. Amer. Math. Soc., 361 (2009), 6191–6203.

    Article  MathSciNet  Google Scholar 

  24. I. Kombe and M. Özaydın, Hardy-Poincare, Rellich and uncertainty principle inequalities on Riemannian manifolds, Trans. Amer. Math. Soc., 365 (2013), 5035–5050.

    Article  MathSciNet  Google Scholar 

  25. I. Kombe and A. Yener, Weighted Hardy and Rellich type inequalities on Riemannian manifolds, Math. Nachr., 289 (2016), 994–1004.

    Article  MathSciNet  Google Scholar 

  26. J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problémes que pose l’hydrodynamique, J. Math. Pures et Appl. Sér., 12 (1933), 1–82.

    MATH  Google Scholar 

  27. P. Li and J. Wang, Weighted Poincaré inequality and rigidity of complete manifolds, Ann. Sci. École Norm. Sup., 39 (2006), 921–982.

    Article  MathSciNet  Google Scholar 

  28. H. A. Levine, The role of critical exponents in blow-up theorems, SIAM Review, 32 (1990), 262–288.

    Article  MathSciNet  Google Scholar 

  29. P. Lindqvist, On the equation\({\rm div}(|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2} u = 0\), Proc. Amer. Math. Soc., 109 (1990), 157–164.

    MathSciNet  MATH  Google Scholar 

  30. H. P. McKean, An upper bound to the spectrum of\(\Delta \)on a manifold of negative curvature, J. Diff. Geom., 4 (1970), 359–366.

  31. Q. A. Ngo and V. H. Nguyen, Sharp constant for Poincaré-type inequalities in the hyperbolic space, Acta Mathematica Vietnamica, 44 (2019), 781–795.

    Article  MathSciNet  Google Scholar 

  32. I. Peral and J.L. Vazquez, On the stability or instability of the singular solution of the semilinear heat equation with potential reaction term, Arch. Rational Mech. Anal., 129 (1995), 201–224.

    Article  MathSciNet  Google Scholar 

  33. J. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer, New York, 2006.

    MATH  Google Scholar 

  34. L. Saloff-Coste, Aspects of Sobolev-type Inequalities, London Math. Soc. Lecture Note Series, 289. Cambridge University Press, Cambridge (2002).

  35. R. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal., 52 (1983), 48–79.

    Article  MathSciNet  Google Scholar 

  36. J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behavior of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103–153.

    Article  MathSciNet  Google Scholar 

  37. F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38 (1981), 29–40.

    Article  MathSciNet  Google Scholar 

  38. Qi S. Zhang, A new critical phenomenon for semilinear parabolic problems, J. Math. Anal. Appl., 219 (1998), 125–139.

    Article  MathSciNet  Google Scholar 

  39. Qi S. Zhang, Blow up results for nonlinear parabolic equations on manifolds, Duke Math. J., 97 (1999), 515–539.

    Article  MathSciNet  Google Scholar 

  40. Qi S. Zhang, Semilinear parabolic problems on manifolds and applications to the non-compact Yamabe problem, Electron. J. Differential Equations, 46 (2000), 1–30.

    MathSciNet  Google Scholar 

  41. Qi S. Zhang, The Quantizing Effect of Potentials on the Critical Number of Reaction Diffusion Equations, J. Differential Equations, 170 (2001), 188–214.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Kömbe.

Additional information

Dedicated to Matthias Hieber on the occasion of his 60th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldstein, G.R., Goldstein, J.A., Kömbe, I. et al. Nonexistence results for parabolic equations involving the \({\varvec{p}}\)-Laplacian and Hardy–Leray-type inequalities on Riemannian manifolds. J. Evol. Equ. 21, 3675–3701 (2021). https://doi.org/10.1007/s00028-021-00691-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-021-00691-5

Keywords

Navigation